Get Free Shipping on orders over $79
Machine Learning-Based Modelling in Atomic Layer Deposition Processes : Emerging Materials and Technologies - Oluwatobi Adeleke

Machine Learning-Based Modelling in Atomic Layer Deposition Processes

By: Oluwatobi Adeleke, Sina Karimzadeh, Tien-Chien Jen

eText | 15 December 2023 | Edition Number 1

At a Glance

eText


$111.10

or 4 interest-free payments of $27.77 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

While thin film technology has benefited greatly from artificial intelligence (AI) and machine learning (ML) techniques, there is still much to be learned from a full-scale exploration of these technologies in atomic layer deposition (ALD). This book provides in-depth information regarding the application of ML-based modeling techniques in thin film technology as a standalone approach and integrated with the classical simulation and modeling methods. It is the first of its kind to present detailed information regarding approaches in ML-based modeling, optimization, and prediction of the behaviors and characteristics of ALD for improved process quality control and discovery of new materials. As such, this book fills significant knowledge gaps in the existing resources as it provides extensive information on ML and its applications in film thin technology.

  • Offers an in-depth overview of the fundamentals of thin film technology, state-of-the-art computational simulation approaches in ALD, ML techniques, algorithms, applications, and challenges.
  • Establishes the need for and significance of ML applications in ALD while introducing integration approaches for ML techniques with computation simulation approaches.
  • Explores the application of key techniques in ML, such as predictive analysis, classification techniques, feature engineering, image processing capability, and microstructural analysis of deep learning algorithms and generative model benefits in ALD.
  • Helps readers gain a holistic understanding of the exciting applications of ML-based solutions to ALD problems and apply them to real-world issues.

Aimed at materials scientists and engineers, this book fills significant knowledge gaps in existing resources as it provides extensive information on ML and its applications in film thin technology. It also opens space for future intensive research and intriguing opportunities for ML-enhanced ALD processes, which scale from academic to industrial applications.

.

.

on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 6th May 2025

More in Industrial Chemistry & Manufacturing Technologies