Get Free Shipping on orders over $79
Building Recommender Systems Using Large Language Models : Professional and Applied Computing (R0) - () (Jay) Wang

Building Recommender Systems Using Large Language Models

By: () (Jay) Wang

eText | 21 October 2025

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This book offers a comprehensive exploration of the intersection between Large Language Models (LLMs) and recommendation systems, serving as a practical guide for practitioners, researchers, and students in AI, natural language processing, and data science. It addresses the limitations of traditional recommendation techniques—such as their inability to fully understand nuanced language, reason dynamically over user preferences, or leverage multi-modal data—and demonstrates how LLMs can revolutionize personalized recommendations. By consolidating fragmented research and providing structured, hands-on tutorials, the book bridges the gap between cutting-edge research and real-world application, empowering readers to design and deploy next-generation recommender systems.

Structured for progressive learning, the book covers foundational LLM concepts, the evolution from classic to LLM-powered recommendation systems, and advanced topics including end-to-end LLM recommenders, conversational agents, and multi-modal integration. Each chapter blends theoretical insights with practical coding exercises and real-world case studies, such as fashion recommendation and generative content creation. The final chapters discuss emerging challenges, including privacy, fairness, and future trends, offering a forward-looking roadmap for research and application. Readers with a basic understanding of machine learning and NLP will find this resource both accessible and invaluable for building effective, modern recommendation systems enhanced by LLMs.

on
Desktop
Tablet
Mobile

More in Business Aspects of E-Commerce

C-Scape : Conquer the Forces Changing Business Today - Larry Kramer

eBOOK

Amazon.com : Get Big Fast - Robert Spector

eBOOK

The Thank You Economy - Gary Vaynerchuk

eBOOK