Get Free Shipping on orders over $79
Transfer Learning - Qiang Yang
eTextbook alternate format product

Instant online reading.
Don't wait for delivery!

Go digital and save!

Transfer Learning

By: Qiang Yang, Yu Zhang, Wenyuan Dai, Sinno Jialin Pan

Hardcover | 13 February 2020

At a Glance

Hardcover


RRP $119.95

$103.75

14%OFF

or 4 interest-free payments of $25.94 with

 or 

Ships in 5 to 7 business days

Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.
Industry Reviews
'Transfer learning is a critically important approach in settings where data is sparse or expensive. This comprehensive text focuses on when to transfer, what to transfer, and how to transfer previously learned knowledge into a novel current task. The authors cover historic methods as well as very recent methods, classifying them into a comprehensive ontology of transfer learning methods. Through its coverage of basic methods, advanced methods, and multiple application domains, the text will provide a useful guide to both novice and the experienced researchers and practitioners.' Matthew E. Taylor, Principal Researcher at Borealis AI, Edmonton
'This book offers a comprehensive overview of the field, arguing the case for adaptation as key to mimicking human intelligence ... The book includes a substantial bibliography documenting copious citations to the literature. There appear to be few other textbooks in this field apart from this unique work. As such, it will be welcomed by libraries supporting strong computer science programs that may have need for a core text in artificial intelligence.' D. Z. Spicer, Choice

More in Machine Learning

How We Learn : The New Science of Education and the Brain - Stanislas Dehaene
Handbook of Reinforcement Learning - Todd Mcmullen
Superintelligence : Paths, Dangers, Strategies - Nick  Bostrom

RRP $32.95

$26.99

18%
OFF
Machine Learning For Dummies : For Dummies (Computer/Tech) - Luca Massaron
HBR Guide to Generative AI for Managers : HBR Guide - Elisa Farri
Mathematics for Machine Learning - Marc Peter Deisenroth

RRP $79.95

$61.75

23%
OFF
Learning Spark : Lightning-Fast Data Analytics - Brooke Wenig

RRP $152.00

$73.75

51%
OFF