Get Free Shipping on orders over $79
Predicting Hotspots : Using Machine Learning to Understand Civil Conflict - Atin Basuchoudhary

Predicting Hotspots

Using Machine Learning to Understand Civil Conflict

By: Atin Basuchoudhary, Tinni Sen, John David, James T. Bang

Hardcover | 15 September 2018

At a Glance

Hardcover


RRP $228.00

$199.75

12%OFF

or 4 interest-free payments of $49.94 with

 or 

Ships in 25 to 30 business days

This book should be useful to anyone interested in identifying the causes of civil conflict and doing something to end it. It even suggests a pathway for the lay reader. Civil conflict is a persistent source of misery to humankind. Its study, however, lacks a comprehensive theory of its causes. Nevertheless, the question of cooperation or conflict is at the heart of political economy. This book introduces Machine Learning to explore whether there even is a unified theory of conflict, and if there is, whether it is a 'good' one. A good theory is one that not only identifies the causes of conflict, but also identifies those causes that predict conflict. Machine learning algorithms use out of sample techniques to choose between competing hypotheses about the sources of conflict according to their predictive accuracy. This theoretically agnostic 'picking' has the added benefit of offering some protection against many of the problems noted in the current literature; the tangled causality between conflict and its correlates, the relative rarity of civil conflict at a global level, missing data, and spectacular statistical assumptions. This book argues that the search for a unified theory of conflict must begin among these more predictive sources of civil conflict. In fact, in the book, there is a clear sense that game theoretic rational choice models of bargaining/commitment failure predict conflict better than any other approach. In addition, the algorithms highlight the fact that conflict is path dependent - it tends to continue once started. This is intuitive in many ways but is roundly ignored as a matter of science. It should not. Further, those causes of conflict that best predict conflict can be used as policy levers to end or prevent conflict. This book should therefore be of interest to military and civil leaders engaged in ending civil conflict. Last, though not least, the book highlights how the sources of conflict affect conflict. This additional insight may allow the crafting of policies that match a country's specific circumstance.
Industry Reviews

In Predicting Hotspots: Using Machine Learning to Understand Civil Conflict James T. Bang, Atin Basuchoudhary, John David, and Tinni Sen provide a vital contribution to the social scientific study of civil wars and other forms of violence within states. Whereas most theoretical and empirical studies of intrastate conflicts emphasize the correlates or the causes of violence, this book offers a variety of standard and innovative methodologies to best predict future civil wars. The book is a must-have for scholars and policymakers concerned about predicting future civil wars and what can be done to prevent them.

More in Peace Studies & Conflict Resolution

On My Watch : Leading NATO in a Time of War - Jens Stoltenberg

RRP $39.99

$31.75

21%
OFF
How to Spot a Fascist - Umberto Eco

RRP $12.99

$12.75

Breath : Wake Up to Life - Prem Rawat

RRP $44.99

$44.75

The World As I See It - Albert Einstein

$19.75