| Nonlinear and Chaotic Maps | p. 1 |
| One-Dimensional Maps | p. 1 |
| Exact and Numerical Trajectories | p. 4 |
| Fixed Points and Stability | p. 21 |
| Invariant Density | p. 23 |
| Liapunov Exponent | p. 30 |
| Autocorrelation Function | p. 35 |
| Discrete Fourier Transform | p. 38 |
| Fast Fourier Transform | p. 42 |
| Logistic Map and Liapunov Exponent for [gamma] [set membership] [3, 4] | p. 49 |
| Logistic Map and Bifurcation Diagram | p. 51 |
| Random Number Map and Invariant Density | p. 53 |
| Random Number Map and Random Integration | p. 56 |
| Circle Map and Rotation Number | p. 59 |
| Newton Method | p. 61 |
| Feigenbaum's Constant | p. 64 |
| Symbolic Dynamics | p. 66 |
| Two-Dimensional Maps | p. 69 |
| Introduction | p. 69 |
| Phase Portrait | p. 71 |
| Fixed Points and Stability | p. 82 |
| Liapunov Exponents | p. 84 |
| Correlation Integral | p. 86 |
| Capacity | p. 88 |
| Hyperchaos | p. 91 |
| Domain of Attraction | p. 96 |
| Newton Method in the Complex Domain | p. 98 |
| Newton Method in Higher Dimensions | p. 101 |
| Ruelle-Takens-Newhouse Scenario | p. 103 |
| JPEG file | p. 106 |
| Time Series Analysis | p. 109 |
| Introduction | p. 109 |
| Correlation Coefficient | p. 110 |
| Liapunov Exponent from Time Series | p. 112 |
| Jacobian Matrix Estimation Algorithm | p. 113 |
| Direct Method | p. 115 |
| Hurst Exponent | p. 125 |
| Introduction | p. 125 |
| Implementation for the Hurst Exponent | p. 128 |
| Complexity | p. 134 |
| Autonomous Systems in the Plane | p. 139 |
| Classification of Fixed Points | p. 139 |
| Homoclinic Orbit | p. 142 |
| Pendulum | p. 144 |
| Limit Cycle Systems | p. 146 |
| Lotka-Volterra Systems | p. 151 |
| Nonlinear Hamilton Systems | p. 155 |
| Hamilton Equations of Motion | p. 155 |
| Hamilton System and Variational Equation | p. 159 |
| Integrable Hamilton Systems | p. 161 |
| Hamilton Systems and First Integrals | p. 161 |
| Lax Pair and Hamilton Systems | p. 163 |
| Floquet Theory | p. 166 |
| Chaotic Hamilton Systems | p. 171 |
| Henon-Heiles Hamilton Function and Trajectories | p. 171 |
| Henon Heiles and Surface of Section Method | p. 173 |
| Quartic Potential and Surface of Section Technique | p. 176 |
| Nonlinear Dissipative Systems | p. 179 |
| Fixed Points and Stability | p. 179 |
| Trajectories | p. 186 |
| Phase Portrait | p. 191 |
| Liapunov Exponents | p. 194 |
| Generalized Lotka-Volterra Model | p. 198 |
| Hyperchaotic Systems | p. 201 |
| Hopf Bifurcation | p. 206 |
| Time-Dependent First Integrals | p. 209 |
| Nonlinear Driven Systems | p. 211 |
| Introduction | p. 211 |
| Driven Anharmonic Systems | p. 215 |
| Phase Portrait | p. 215 |
| Poincare Section | p. 217 |
| Liapunov Exponent | p. 220 |
| Autocorrelation Function | p. 223 |
| Power Spectral Density | p. 228 |
| Driven Pendulum | p. 229 |
| Phase Portrait | p. 229 |
| Poincare Section | p. 232 |
| Parametrically Driven Pendulum | p. 235 |
| Phase Portrait | p. 235 |
| Poincare Section | p. 237 |
| Driven Van der Pol Equation | p. 239 |
| Phase Portrait | p. 239 |
| Liapunov Exponent | p. 242 |
| Parametrically and Externally Driven Pendulum | p. 245 |
| Controlling and Synchronization of Chaos | p. 249 |
| Introduction | p. 249 |
| Ott-Yorke-Grebogi Method | p. 250 |
| One-Dimensional Maps | p. 250 |
| Systems of Difference Equations | p. 255 |
| Small Periodic Perturbation | p. 260 |
| Resonant Perturbation and Control | p. 263 |
| Synchronization of Chaos | p. 264 |
| Synchronization Using Control | p. 264 |
| Synchronizing Subsystems | p. 268 |
| Phase Coupled Systems | p. 272 |
| Fractals | p. 279 |
| Introduction | p. 279 |
| Iterated Function System | p. 281 |
| Introduction | p. 281 |
| Cantor Set | p. 283 |
| Heighway's Dragon | p. 286 |
| Sierpinski Gasket | p. 289 |
| Koch Curve | p. 291 |
| Mandelbrot Set | p. 295 |
| Julia Set | p. 298 |
| Weierstrass Function | p. 300 |
| Cellular Automata | p. 303 |
| Introduction | p. 303 |
| One-Dimensional Cellular Automata | p. 306 |
| Two-Dimensional Cellular Automata | p. 308 |
| Button Game | p. 313 |
| Solving Differential Equations | p. 317 |
| Introduction | p. 317 |
| Euler Method | p. 318 |
| Lie Series Technique | p. 320 |
| Runge-Kutta-Fehlberg Technique | p. 325 |
| Ghost Solutions | p. 327 |
| Symplectic Integration | p. 332 |
| Invisible Chaos | p. 338 |
| Stormer Method | p. 340 |
| Neural Networks | p. 341 |
| Introduction | p. 341 |
| Hopfield Model | p. 346 |
| Introduction | p. 346 |
| Synchronous Operations | p. 349 |
| Energy Function | p. 352 |
| Basins and Radii of Attraction | p. 354 |
| Spurious Attractors | p. 355 |
| Hebb's Law | p. 356 |
| Example | p. 358 |
| Program | p. 361 |
| Asynchronous Operation | p. 367 |
| Translation Invariant Pattern Recognition | p. 368 |
| Similarity Metrics | p. 370 |
| Kohonen Network | p. 376 |
| Introduction | p. 376 |
| Algorithm | p. 377 |
| Example | p. 380 |
| Traveling Salesman Problem | p. 388 |
| Perceptron | p. 393 |
| Introduction | p. 393 |
| Boolean Functions | p. 396 |
| Linearly Separable Sets | p. 398 |
| Perceptron Learning | p. 399 |
| One and Two Layered Networks | p. 403 |
| Perceptron Learning Algorithm | p. 404 |
| The XOR Problem and Two-Layered Networks | p. 409 |
| Multilayer Perceptrons | p. 414 |
| Introduction | p. 414 |
| Cybenko's Theorem | p. 415 |
| Back-Propagation Algorithm | p. 416 |
| Genetic Algorithms | p. 427 |
| Introduction | p. 427 |
| The Sequential Genetic Algorithm | p. 429 |
| Schemata Theorem | p. 433 |
| Bitwise Operations | p. 436 |
| A Bit Vector Class | p. 442 |
| Maximum of One-Dimensional Maps | p. 446 |
| Maximum of Two-Dimensional Maps | p. 455 |
| Problems with Constraints | p. 465 |
| Introduction | p. 465 |
| Knapsack Problem | p. 468 |
| Traveling Salesman Problem | p. 475 |
| Simulated Annealing | p. 486 |
| Parallel Genetic Algorithms | p. 489 |
| Gene Expression Programming | p. 503 |
| Introduction | p. 503 |
| Example | p. 506 |
| Discrete Wavelets | p. 515 |
| Introduction | p. 515 |
| Example | p. 520 |
| Two-Dimensional Wavelets | p. 525 |
| Fuzzy Sets and Fuzzy Logic | p. 527 |
| Introduction | p. 527 |
| Operators for Fuzzy Sets | p. 538 |
| Logical Operators | p. 538 |
| Algebraic Operators | p. 542 |
| Defuzzification Operators | p. 544 |
| Fuzzy Concepts as Fuzzy Sets | p. 546 |
| Hedging | p. 548 |
| Quantifying Fuzzyness | p. 550 |
| C++ Implementation of Discrete Fuzzy Sets | p. 551 |
| Applications: Simple Decision-Making Problems | p. 573 |
| Fuzzy Numbers and Fuzzy Arithmetic | p. 581 |
| Introduction | p. 581 |
| Algebraic Operations | p. 582 |
| LR-Representations | p. 587 |
| Algebraic Operations on Fuzzy Numbers | p. 590 |
| C++ Implementation of Fuzzy Numbers | p. 592 |
| Applications | p. 600 |
| Fuzzy Rule-Based Systems | p. 601 |
| Introduction | p. 601 |
| Fuzzy If-Then Rules | p. 606 |
| Inverted Pendulum Control System | p. 607 |
| Application | p. 609 |
| Fuzzy Truth Values and Probabilities | p. 612 |
| Bibliography | p. 613 |
| Table of Contents provided by Ingram. All Rights Reserved. |