| Introduction | p. 1 |
| References | p. 7 |
| Microwaves | p. 9 |
| Propagation Characteristics | p. 10 |
| Skin Effect | p. 13 |
| Coaxial Lines and Waveguides | p. 15 |
| Coaxial Lines | p. 16 |
| Waveguides | p. 20 |
| Modes | p. 25 |
| Transmission-Line Effects | p. 27 |
| The Smith Chart | p. 31 |
| Impedance Matching | p. 35 |
| Resonant Cavities | p. 37 |
| References | p. 39 |
| Vacuum Techniques | p. 41 |
| Units of Measurement | p. 41 |
| Ranges of Operation | p. 42 |
| Gas Density and Mean Free Path Length | p. 43 |
| Fundamentals of Vacuum Systems | p. 45 |
| Pumping Techniques | p. 49 |
| Sliding Vane Rotary Pump | p. 49 |
| Diffusion Pump | p. 53 |
| Turbomolecular Pump | p. 56 |
| Adsorption Pump | p. 56 |
| Ion Pump | p. 59 |
| Getters | p. 62 |
| Vacuum Measuring Techniques | p. 67 |
| Thermocouple Gauge | p. 68 |
| Ionization Gauge | p. 68 |
| Microwave Tube Materials | p. 69 |
| Fabrication Techniques | p. 76 |
| References | p. 84 |
| Magnetic Focusing | p. 85 |
| Electromagnets | p. 86 |
| Solenoids | p. 86 |
| Permanent Magnets | p. 91 |
| Diamagnetism | p. 91 |
| Paramagnetism | p. 91 |
| Ferromagnetic Materials | p. 91 |
| Characteristics of Ferromagnetic Materials | p. 92 |
| Energy Product | p. 97 |
| Permanent-Magnet Configurations | p. 101 |
| References | p. 105 |
| Cathodes | p. 107 |
| Thermionic Emission | p. 108 |
| Schottky Effect | p. 112 |
| Field Emission | p. 115 |
| Space-Charge Effect | p. 116 |
| Evolution of Thermionic Cathodes | p. 122 |
| Impregnated Dispenser Cathode Operation | p. 128 |
| Life Considerations | p. 130 |
| Dispenser Cathode Surface Physics | p. 133 |
| Secondary Emission | p. 135 |
| References | p. 139 |
| Electron Guns for Linear-Beam Tubes | p. 141 |
| Pierce Guns | p. 141 |
| Pierce Electrodes | p. 141 |
| Convergent Flow | p. 143 |
| Anode Aperture | p. 148 |
| Beam Minimum | p. 152 |
| Beam Control Electrodes | p. 156 |
| Grids | p. 156 |
| Control Focus Electrodes | p. 160 |
| Modulating Anode | p. 160 |
| Summary of Beam Control Electrode Characteristics | p. 161 |
| References | p. 162 |
| Electron Beams for Linear-Beam Tubes | p. 163 |
| Focusing with a Shielded Cathode | p. 164 |
| Brillouin Flow | p. 165 |
| Scalloping | p. 167 |
| Confined Flow Focusing | p. 176 |
| Periodic-Permanent-Magnet Focusing | p. 179 |
| Ion Effects in Electron Beams | p. 181 |
| Effect on Emission | p. 182 |
| Oscillations | p. 182 |
| References | p. 188 |
| Gridded Tubes | p. 191 |
| Triodes and Tetrodes | p. 191 |
| Klystrodes | p. 196 |
| References | p. 200 |
| Klystrons | p. 201 |
| The Invention of the Klystron | p. 204 |
| Cavity Resonators | p. 205 |
| Velocity Modulation | p. 209 |
| RF Current Generation in a Cavity | p. 214 |
| Velocity Modulation with Space-Charge Forces | p. 215 |
| Plasma Frequency Reduction | p. 217 |
| Velocity Modulation of a Brillouin Beam | p. 219 |
| Klystron Amplifiers | p. 227 |
| Tuning | p. 229 |
| Gain Characteristics | p. 233 |
| Reflex Klystrons | p. 235 |
| References | p. 238 |
| Traveling Wave Tubes | p. 241 |
| The Invention of the Traveling Wave Tube | p. 241 |
| Traveling Wave Interaction | p. 242 |
| Analysis of Traveling Wave Interaction | p. 246 |
| Synchronous Case | p. 248 |
| Velocities Other Than Synchronous | p. 251 |
| Effect of Loss | p. 252 |
| Effects of Space Charge | p. 254 |
| Large-Signal Effects | p. 256 |
| Attenuators and Severs | p. 258 |
| The Dispersion Curve | p. 261 |
| Helix TWTs | p. 267 |
| Helix Bandwidth | p. 269 |
| Transitions | p. 275 |
| Helix Support Techniques | p. 278 |
| MM-Wave Helix TWTs | p. 282 |
| High-Power Operation | p. 283 |
| Ring-Bar TWTs | p. 287 |
| Helix BWOs | p. 291 |
| Dual-Mode Operation | p. 293 |
| Coupled Cavity TWTs | p. 295 |
| Fundamental Forward-Wave Operation | p. 296 |
| Fundamental Forward-Wave Circuits | p. 298 |
| Fundamental Backward-Wave Operation | p. 301 |
| Fundamental Backward-Wave Circuits | p. 302 |
| Analytical Considerations | p. 305 |
| Terminations and Transitions | p. 309 |
| References | p. 312 |
| Hybrid Tubes | p. 315 |
| Extended Interaction Klystron (EIK) | p. 315 |
| Extended Interaction Oscillator (EIO) | p. 317 |
| Twystrons | p. 321 |
| References | p. 323 |
| Efficiency Enhancement in Linear-Beam Tubes | p. 325 |
| Power Flow | p. 325 |
| Depressed Collectors | p. 328 |
| Multistage Depressed Collectors | p. 332 |
| Circuit Efficiency | p. 340 |
| References | p. 345 |
| Crossed-Field Tubes | p. 347 |
| History of the Magnetron | p. 347 |
| Magnetrons | p. 349 |
| Electron Motion | p. 349 |
| Cavity Structure | p. 352 |
| Electron Interaction | p. 355 |
| Moding | p. 358 |
| Coaxial Magnetrons | p. 365 |
| Inverted Magnetrons | p. 367 |
| Magnetron Tuning | p. 368 |
| Cathode and Heater Operation | p. 374 |
| Performance | p. 376 |
| Crossed-Field Amplifiers | p. 380 |
| Distributed-Emission CFAs | p. 380 |
| CFA Emission | p. 383 |
| DC Operation | p. 384 |
| Slow-Wave Circuits | p. 386 |
| Voltage-Current Characteristics | p. 388 |
| CFA Performance | p. 390 |
| CFA Phase Characteristics | p. 400 |
| Thermal Considerations | p. 402 |
| M-Type Backward-Wave Oscillators | p. 407 |
| Voltage-Tunable Magnetrons | p. 410 |
| References | p. 413 |
| Fast Wave Tubes | p. 415 |
| Ubitrons | p. 416 |
| Peniotrons | p. 418 |
| Gyrotrons | p. 420 |
| Gyrotron Oscillators | p. 425 |
| Gyroklystrons | p. 430 |
| Gyro-TWTs | p. 431 |
| References | p. 434 |
| Breakdown and Protection | p. 437 |
| Field Enhancement | p. 439 |
| DC Breakdown in Gases | p. 443 |
| RF Breakdown in Gases | p. 451 |
| DC Breakdown in Vacuum | p. 463 |
| RF Breakdown in Vacuum | p. 474 |
| Insulator Flashover | p. 475 |
| References | p. 480 |
| Concluding Remarks | p. 481 |
| Index | p. 483 |
| Table of Contents provided by Syndetics. All Rights Reserved. |