Get Free Shipping on orders over $79
Maximum Likelihood Estimation : Logic and Practice - Scott R. Eliason

Maximum Likelihood Estimation

Logic and Practice

By: Scott R. Eliason

eText | 9 August 1993 | Edition Number 1

At a Glance

eText


$66.00

or 4 interest-free payments of $16.50 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

"Maximum Likelihood Estimation. . . provides a useful introduction. . . it is clear and easy to follow with applications and graphs. . . . I consider this a very useful book. . . . well-written, with a wealth of explanation. . ."

--Dougal Hutchison in Educational Research

Eliason reveals to the reader the underlying logic and practice of maximum likelihood (ML) estimation by providing a general modeling framework that utilizes the tools of ML methods. This framework offers readers a flexible modeling strategy since it accommodates cases from the simplest linear models (such as the normal error regression model) to the most complex nonlinear models that link a system of endogenous and exogenous variables with non-normal distributions. Using examples to illustrate the techniques of finding ML estimators and estimates, Eliason discusses what properties are desirable in an estimator, basic techniques for finding maximum likelihood solutions, the general form of the covariance matrix for ML estimates, the sampling distribution of ML estimators; the use of ML in the normal as well as other distributions, and some useful illustrations of likelihoods.

on
Desktop
Tablet
Mobile

More in Social Research & Statistics