| Introduction to Finite-element-model Updating | p. 1 |
| Introduction | p. 1 |
| Finite-element Modeling | p. 2 |
| Vibration Analysis | p. 5 |
| Domains Used for Finite-element-model Updating | p. 6 |
| Modal-domain Data (MDD) | p. 6 |
| Frequency-domain Data | p. 9 |
| Finite-element-model Updating Methods | p. 10 |
| Computational Intelligence Methods | p. 17 |
| Outline of the Book | p. 18 |
| References | p. 18 |
| Finite-element-model Updating Using Nelder-Mead Simplex and Newton Broyden-Fletcher-Goldfarb-Shanno Methods | p. 25 |
| Introduction | p. 25 |
| Introduction to Structural Dynamics | p. 26 |
| Expansion/Reduction Methods | p. 28 |
| Model Expansion and Reduction Procedures | p. 28 |
| Model Reduction | p. 28 |
| Model Expansion | p. 31 |
| Methods for Comparing Data | p. 33 |
| Direct Comparison | p. 33 |
| Frequency-response Functions Assurance Criterion (FRFAC) | p. 34 |
| The Model Assurance Criterion (MAC) | p. 35 |
| The Coordinate Modal Assurance Criterion (COMAC) | p. 36 |
| Optimization Methods | p. 36 |
| Nelder-Mead Simplex Method | p. 36 |
| Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm | p. 38 |
| Example 1: Simple Beam | p. 40 |
| Example 2: Unsymmetrical H-shaped Structure | p. 41 |
| Conclusion | p. 44 |
| Further Work | p. 44 |
| References | p. 44 |
| Finite-element-model Updating Using Genetic Algorithm | p. 49 |
| Introduction | p. 49 |
| Mathematical Background | p. 51 |
| Genetic Algorithm | p. 53 |
| Initialization | p. 56 |
| Crossover | p. 56 |
| Mutation | p. 56 |
| Selection | p. 57 |
| Termination | p. 57 |
| Nelder-Mead Simplex Optimization Method | p. 58 |
| Example 1: Simple Beam | p. 59 |
| Example 2: Unsymmetrical H-shaped Structure | p. 61 |
| Conclusion | p. 63 |
| Future Work | p. 63 |
| References | p. 63 |
| Finite-element-model Updating Using Particle-swarm Optimization | p. 67 |
| Introduction | p. 67 |
| Mathematical Background | p. 69 |
| Particle-swarm Optimization | p. 71 |
| Genetic Algorithm (GA) | p. 75 |
| Example 1: A Simple Beam | p. 76 |
| Example 2: Unsymmetrical H-shaped Structure | p. 78 |
| Conclusion | p. 81 |
| Future Work | p. 81 |
| References | p. 82 |
| Finite-element-model Updating Using Simulated Annealing | p. 85 |
| Introduction | p. 85 |
| Mathematical Background | p. 87 |
| Simulated Annealing (SA) | p. 87 |
| Simulated-annealing Parameters | p. 90 |
| Transition Probabilities | p. 91 |
| Monte Carlo Method | p. 91 |
| Markov Chain Monte Carlo (MCMC) | p. 91 |
| Acceptance Probability Function: Metropolis Algorithm | p. 92 |
| Cooling Schedule | p. 92 |
| Particle-swarm-optimization Method | p. 94 |
| Example 1: Simple Beam | p. 95 |
| Example 2: Unsymmetrical H-shaped Structure | p. 97 |
| Conclusion | p. 98 |
| Future Work | p. 98 |
| References | p. 99 |
| Finite-element-model Updating Using the Response-surface Method | p. 103 |
| Introduction | p. 103 |
| Mathematical Background | p. 105 |
| Response-surface Method (RSM) | p. 105 |
| Neural Networks | p. 109 |
| Multi-layer Perceptron (MLP) | p. 110 |
| Training the Multi-layer Perceptron | p. 111 |
| Back-propagation Method | p. 113 |
| Scaled Conjugate Gradient Method | p. 114 |
| Evolutionary Optimization | p. 115 |
| Example 1: Simple Beam | p. 117 |
| Example 2: Unsymmetrical H-shaped Structure | p. 119 |
| Conclusion | p. 121 |
| Future Work | p. 121 |
| References | p. 122 |
| Finite-element-model Updating Using a Hybrid Optimization Method | p. 127 |
| Introduction | p. 127 |
| Introduction to Structural Dynamics | p. 128 |
| Hybrid Particle-swarm Optimization and the Nelder-Mead Simplex | p. 129 |
| Example 1: Simple Beam | p. 135 |
| Example 2: Unsymmetrical H-shaped Structure | p. 136 |
| Conclusion | p. 138 |
| Future Work | p. 138 |
| References | p. 139 |
| Finite-element-model Updating Using a Multi-criteria Method | p. 143 |
| Introduction | p. 143 |
| Mathematical Foundation | p. 144 |
| Frequency-response Function Method (FRFM) | p. 145 |
| Modal Property Method (MPM) | p. 147 |
| Multi-criteria Method | p. 151 |
| Optimization | p. 153 |
| Example 1: Simple Beam | p. 154 |
| Example 2: Unsymmetrical H-shaped Structure | p. 155 |
| Conclusion | p. 157 |
| Future Work | p. 157 |
| References | p. 157 |
| Finite-element-model Updating Using Artificial Neural Networks | p. 161 |
| Introduction | p. 161 |
| Bayesian Neural Networks | p. 164 |
| Stochastic Dynamics Model | p. 167 |
| Metropolis Algorithm | p. 170 |
| Hybrid Monte Carlo | p. 170 |
| Finite-element Updating Using Neural Networks and Control Theory | p. 172 |
| Example 1: Simple Beam | p. 174 |
| Example 2: Unsymmetrical H-shaped Structure | p. 176 |
| Conclusion | p. 177 |
| Future Work | p. 178 |
| References | p. 178 |
| Finite-element-model Updating Using a Bayesian Approach | p. 183 |
| Introduction | p. 183 |
| Mathematical Foundation | p. 185 |
| Dynamics | p. 185 |
| Bayesian Method | p. 186 |
| Markov Chain Monte Carlo Method | p. 189 |
| MCMC: Genetic Programming and Metropolis Algorithm | p. 191 |
| Example 1: Simple Beam | p. 194 |
| Example 2: Unsymmetrical H-shaped Structure | p. 196 |
| Conclusion | p. 198 |
| Future Work | p. 198 |
| References | p. 199 |
| Finite-element-model Updating Applied in Damage Detection | p. 203 |
| Introduction | p. 203 |
| Data Used for Damage Detection | p. 205 |
| Time Domain | p. 205 |
| Frequency Domain | p. 206 |
| Modal Domain | p. 207 |
| Time-Frequency Domain | p. 207 |
| Model Identification Methods | p. 208 |
| Neural Networks | p. 208 |
| Support Vector Machines | p. 209 |
| Fuzzy Logic | p. 209 |
| Rough Sets | p. 210 |
| Finite-element-model Updating Approach | p. 211 |
| Example 1: Suspended Beam | p. 213 |
| Example 2: Freely Suspended H-shaped Structure | p. 215 |
| Conclusion | p. 219 |
| Future Work | p. 219 |
| References | p. 219 |
| Conclusions and Emerging State-of-the-art | p. 225 |
| Introduction | p. 225 |
| Overview of the Previous Chapters | p. 226 |
| Outstanding Issues | p. 227 |
| Model Selection | p. 227 |
| Objective Function | p. 228 |
| Data Used for Finite-element-model Updating | p. 229 |
| Local Versus Global Optimally Updated Model | p. 229 |
| Online Finite-element-model Updating | p. 229 |
| The Issue of Damping | p. 230 |
| Dealing with Nonlinearity | p. 230 |
| Nonuniqueness | p. 230 |
| Parameter Selection | p. 231 |
| References | p. 231 |
| Finite-element Modeling | p. 233 |
| Introduction | p. 233 |
| Discretization and Shape Functions | p. 233 |
| Estimation of Mass and Stiffness Matrices | p. 235 |
| Multi-degree-of-freedom Mass-spring System | p. 237 |
| Damping | p. 238 |
| Eigenvalues and Eigenvectors | p. 239 |
| Frequency-response Functions | p. 240 |
| Modal Property Extraction | p. 242 |
| References | p. 242 |
| Introduction to Vibration Analysis | p. 243 |
| Introduction | p. 243 |
| Excitation and Response Measurements | p. 243 |
| Amplifiers | p. 244 |
| Filter | p. 244 |
| Data-logging System | p. 245 |
| Signal Processing | p. 245 |
| References | p. 245 |
| Bibliography | p. 247 |
| Index | p. 249 |
| Table of Contents provided by Ingram. All Rights Reserved. |