Get Free Shipping on orders over $79
Domain Decomposition Methods in Optimal Control of Partial Differential Equations - John E. Lagnese

Domain Decomposition Methods in Optimal Control of Partial Differential Equations

By: John E. Lagnese, Günter Leugering

eText | 6 December 2012

At a Glance

eText


$159.01

or 4 interest-free payments of $39.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
This monograph considers problems of optimal control for partial differential equa­ tions of elliptic and, more importantly, of hyperbolic types on networked domains. The main goal is to describe, develop and analyze iterative space and time domain decompositions of such problems on the infinite-dimensional level. While domain decomposition methods have a long history dating back well over one hundred years, it is only during the last decade that they have become a major tool in numerical analysis of partial differential equations. A keyword in this context is parallelism. This development is perhaps best illustrated by the fact that we just encountered the 15th annual conference precisely on this topic. Without attempting to provide a complete list of introductory references let us just mention the monograph by Quarteroni and Valli [91] as a general up-to-date reference on domain decomposition methods for partial differential equations. The emphasis of this monograph is to put domain decomposition methods in the context of so-called virtual optimal control problems and, more importantly, to treat optimal control problems for partial differential equations and their decom­ positions by an all-at-once approach. This means that we are mainly interested in decomposition techniques which can be interpreted as virtual optimal control problems and which, together with the real control problem coming from an un­ derlying application, lead to a sequence of individual optimal control problems on the subdomains that are iteratively decoupled across the interfaces.
on
Desktop
Tablet
Mobile

More in Technology in General

SAFE : Science and Technology in the Age of Ter - Martha Baer

eBOOK