Get Free Shipping on orders over $79
Computational Micromagnetism - Andreas Prohl

Computational Micromagnetism

By: Andreas Prohl

eText | 11 November 2013

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
In this work, we study numerical issues related to a common mathematical model which describes ferromagnetic materials, both in a stationary and non­ stationary context. Electromagnetic effects are accounted for in an extended model to study nonstationary magneto-electronics. The last part deals with the numerical analysis of the commonly used Ericksen-Leslie model to study the fluid flow of nematic liquid crystals which find applications in display technologies, for example. All these mathematical models to describe different microstructural phe­ nomena share common features like (i) strong nonlinearities, and (ii) non­ convex side constraints (i.e., I m I = 1, almost everywhere in w C JRd, for the order parameter m : w -+ JRd). One key issue in numerical modeling of such problems is to make sure that the non-convex constraint is fulfilled for computed solutions. We present and analyze different solution strategies to deal with the variational problem of stationary micromagnetism, which builds part I of the book: direct minimization, convexification, and relaxation using Young measure-valued solutions. In particular, we address the following points: • Direct minimization: A spatial triangulation 'generates an artificial exchange energy contribution' in the discretized minimizing problem which may pollute physically relevant exchange energy contributions; its minimizers exhibit multiple scales (with branching structures near the boundary of the ferromagnet) and are difficult to be computed efficiently. We exploit this observation to construct an adaptive scheme which better resolves multiple scale structures (cubic ferromagnets).
on
Desktop
Tablet
Mobile

More in Technology in General

SAFE : Science and Technology in the Age of Ter - Martha Baer

eBOOK