Get Free Shipping on orders over $79
Vector Optimization : Set-valued and Variational Analysis - Guang-ya Chen

Vector Optimization

Set-valued and Variational Analysis

By: Guang-ya Chen, Xuexiang Huang, Xiaogi Yang

eText | 20 November 2005

At a Glance

eText


$159.01

or 4 interest-free payments of $39.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Vector optimization model has found many important applications in decision making problems such as those in economics theory, management science, and engineering design (since the introduction of the Pareto optimal solu­ tion in 1896). Typical examples of vector optimization model include maxi­ mization/minimization of the objective pairs (time, cost), (benefit, cost), and (mean, variance) etc. Many practical equilibrium problems can be formulated as variational in­ equality problems, rather than optimization problems, unless further assump­ tions are imposed. The vector variational inequality was introduced by Gi- nessi (1980). Extensive research on its relations with vector optimization, the existence of a solution and duality theory has been pursued. The fundamental idea of the Ekeland's variational principle is to assign an optimization problem a slightly perturbed one having a unique solution which is at the same time an approximate solution of the original problem. This principle has been an important tool for nonlinear analysis and optimization theory. Along with the development of vector optimization and set-valued optimization, the vector variational principle introduced by Nemeth (1980) has been an interesting topic in the last decade. Fan Ky's minimax theorems and minimax inequalities for real-valued func­ tions have played a key role in optimization theory, game theory and math­ ematical economics. An extension was proposed to vector payoffs was intro­ duced by Blackwell (1955).
on
Desktop
Tablet
Mobile

More in Economics, Finance, Business and Management