| Introduction | p. 1 |
| Historical Survey | p. 2 |
| Patterns in Nonlinear Optical Resonators | p. 4 |
| Localized Structures: Vortices and Solitons | p. 6 |
| Extended Patterns | p. 8 |
| Optical Patterns in Other Configurations | p. 11 |
| Mirrorless Configuration | p. 11 |
| Single-Feedback-Mirror Configuration | p. 12 |
| Optical Feedback Loops | p. 12 |
| The Contents of this Book | p. 15 |
| References | p. 19 |
| Order Parameter Equations for Lasers | p. 33 |
| Model of a Laser | p. 34 |
| Linear Stability Analysis | p. 36 |
| Derivation of the Laser Order Parameter Equation | p. 41 |
| Adiabatic Elimination | p. 41 |
| Multiple-Scale Expansion | p. 46 |
| References | p. 48 |
| Order Parameter Equations for Other Nonlinear Resonators | p. 51 |
| Optical Parametric Oscillators | p. 51 |
| The Real Swift-Hohenberg Equation for DOPOs | p. 52 |
| Linear Stability Analysis | p. 52 |
| Scales | p. 53 |
| Derivation of the OPE | p. 54 |
| The Complex Swift-Hohenberg Equation for OPOs | p. 55 |
| Linear Stability Analysis | p. 56 |
| Scales | p. 57 |
| Derivation of the OPE | p. 57 |
| The Order Parameter Equation for Photorefractive Oscillators | p. 59 |
| Description and Model | p. 59 |
| Adiabatic Elimination and Operator Inversion | p. 60 |
| Phenomenological Derivation of Order Parameter Equations | p. 61 |
| References | p. 63 |
| Zero Detuning: Laser Hydrodynamics and Optical Vortices | p. 65 |
| Hydrodynamic Form | p. 65 |
| Optical Vortices | p. 67 |
| Strong Diffraction | p. 68 |
| Strong Diffusion | p. 71 |
| Intermediate Cases | p. 72 |
| Vortex Interactions | p. 74 |
| References | p. 79 |
| Finite Detuning: Vortex Sheets and Vortex Lattices | p. 81 |
| Vortices "Riding" on Tilted Waves | p. 82 |
| Domains of Tilted Waves | p. 84 |
| Square Vortex Lattices | p. 87 |
| References | p. 90 |
| Resonators with Curved Mirrors | p. 91 |
| Weakly Curved Mirrors | p. 92 |
| Mode Expansion | p. 93 |
| Circling Vortices | p. 94 |
| Locking of Transverse Modes | p. 95 |
| Degenerate Resonators | p. 97 |
| References | p. 102 |
| The Restless Vortex | p. 103 |
| The Model | p. 103 |
| Single Vortex | p. 105 |
| Vortex Lattices | p. 108 |
| "Optical" Oscillation Mode | p. 109 |
| Parallel translation of a vortex lattice | p. 110 |
| Experimental Demonstration of the "Restless" Vortex | p. 111 |
| Mode Expansion | p. 111 |
| Phase-Insensitive Modes | p. 113 |
| Phase-Sensitive Modes | p. 114 |
| References | p. 115 |
| Domains and Spatial Solitons | p. 117 |
| Subcritical Versus Supercritical Systems | p. 117 |
| Mechanisms Allowing Soliton Formation | p. 118 |
| Supercritical Hopf Bifurcation | p. 119 |
| Subcritical Hopf Bifurcation | p. 120 |
| Amplitude and Phase Domains | p. 122 |
| Amplitude and Phase Spatial Solitons | p. 123 |
| References | p. 124 |
| Subcritical Solitons I: Saturable Absorber | p. 125 |
| Model and Order Parameter Equation | p. 125 |
| Amplitude Domains and Spatial Solitons | p. 127 |
| Numerical Simulations | p. 129 |
| Soliton Formation | p. 129 |
| Soliton Manipulation: Positioning, Propagation, Trapping and Switching | p. 132 |
| Experiments | p. 133 |
| References | p. 138 |
| Subcritical Solitons II: Nonlinear Resonance | p. 139 |
| Analysis of the Homogeneous State. Nonlinear Resonance | p. 139 |
| Spatial Solitons | p. 141 |
| One-Dimensional Case | p. 141 |
| Two-Dimensional Case | p. 144 |
| References | p. 146 |
| Phase Domains and Phase Solitons | p. 147 |
| Patterns in Systems with a Real-Valued Order Parameter | p. 147 |
| Phase Domains | p. 148 |
| Dynamics of Domain Boundaries | p. 150 |
| Variational Approach | p. 150 |
| Two-Dimensional Domains | p. 152 |
| Phase Solitons | p. 155 |
| Nonmonotonically Decaying Fronts | p. 157 |
| Experimental Realization of Phase Domains and Solitons | p. 160 |
| Domain Boundaries and Image Processing | p. 163 |
| References | p. 166 |
| Turing Patterns in Nonlinear Optics | p. 169 |
| The Turing Mechanism in Nonlinear Optics | p. 169 |
| Laser with Diffusing Gain | p. 171 |
| General Case | p. 172 |
| Laser with Saturable Absorber | p. 174 |
| Stabilization of Spatial Solitons by Gain Diffusion | p. 176 |
| Optical Parametric Oscillator with Diffracting Pump | p. 180 |
| Turing Instability in a DOPO | p. 181 |
| Stochastic Patterns | p. 184 |
| Spatial Solitons Influenced by Pump Diffraction | p. 187 |
| References | p. 191 |
| Three-Dimensional Patterns | p. 193 |
| The Synchronously Pumped DOPO | p. 193 |
| Order Parameter Equation | p. 194 |
| Patterns Obtained from the 3D Swift-Hohenberg Equation | p. 196 |
| The Nondegenerate OPO | p. 200 |
| Conclusions | p. 201 |
| Tunability of a System with a Broad Gain Band | p. 201 |
| Analogy Between 2D and 3D Cases | p. 202 |
| References | p. 202 |
| Patterns and Noise | p. 205 |
| Noise in Condensates | p. 206 |
| Spatio-Temporal Noise Spectra | p. 207 |
| NumericalResults | p. 210 |
| Consequences | p. 214 |
| Noisy Stripes | p. 216 |
| Spatio-Temporal Noise Spectra | p. 217 |
| Stochastic Drifts | p. 221 |
| Consequences | p. 223 |
| References | p. 224 |
| Index | p. 225 |
| Table of Contents provided by Publisher. All Rights Reserved. |