Get Free Shipping on orders over $79
Statistical Prediction and Machine Learning - John Tuhao Chen

Statistical Prediction and Machine Learning

By: John Tuhao Chen, Clement Lee, Lincy Y. Chen

eText | 6 August 2024 | Edition Number 1

At a Glance

eText


$171.60

or 4 interest-free payments of $42.90 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Written by an experienced statistics educator and two data scientists, this book unifies conventional statistical thinking and contemporary machine learning framework into a single overarching umbrella over data science. The book is designed to bridge the knowledge gap between conventional statistics and machine learning. It provides an accessible approach for readers with a basic statistics background to develop a mastery of machine learning. The book starts with elucidating examples in Chapter 1 and fundamentals on refined optimization in Chapter 2, which are followed by common supervised learning methods such as regressions, classification, support vector machines, tree algorithms, and range regressions. After a discussion on unsupervised learning methods, it includes a chapter on unsupervised learning and a chapter on statistical learning with data sequentially or simultaneously from multiple resources.

One of the distinct features of this book is the comprehensive coverage of the topics in statistical learning and medical applications. It summarizes the authors' teaching, research, and consulting experience in which they use data analytics. The illustrating examples and accompanying materials heavily emphasize understanding on data analysis, producing accurate interpretations, and discovering hidden assumptions associated with various methods.

Key Features:

  • Unifies conventional model-based framework and contemporary data-driven methods into a single overarching umbrella over data science.
  • Includes real-life medical applications in hypertension, stroke, diabetes, thrombolysis, aspirin efficacy.
  • Integrates statistical theory with machine learning algorithms.
  • Includes potential methodological developments in data science.
on
Desktop
Tablet
Mobile

More in Economic Statistics

The Silent Signal - MILES TRIDENT

eBOOK

Risk to Riches - Eugene Daniels

eBOOK

$23.99

The Comeback Kings - Michael Smith

eBOOK