| Preface | p. vii |
| Introduction | p. 1 |
| Energy Transfer Between Radiation and Atomic Transitions | p. 11 |
| Optical Amplification | p. 11 |
| Interaction of Radiation with Matter | p. 12 |
| Blackbody Radiation | p. 12 |
| Boltzmann's Statistics | p. 13 |
| Einstein's Coefficients | p. 14 |
| Phase Coherence of Stimulated Emission | p. 17 |
| Absorption and Optical Gain | p. 18 |
| Atomic Lineshapes | p. 18 |
| Absorption by Stimulated Transitions | p. 22 |
| Population Inversion | p. 25 |
| Creation of a Population Inversion | p. 27 |
| The Three-Level System | p. 27 |
| The Four-Level System | p. 29 |
| The Metastable Level | p. 30 |
| Laser Rate Equations | p. 32 |
| The Three-Level System | p. 33 |
| The Four-Level System | p. 35 |
| Comparison of Three- and Four-Level Lasers | p. 36 |
| Properties of Solid-State Laser Materials | p. 38 |
| Overview | p. 40 |
| Host Materials | p. 40 |
| Active Ions | p. 45 |
| Ruby | p. 51 |
| Nd:Lasers | p. 54 |
| Nd:YAG | p. 54 |
| Nd:Glass | p. 61 |
| Nd:Cr:GSGG | p. 64 |
| Nd:YLF | p. 66 |
| Nd:YVO[subscript 4] | p. 69 |
| Er:Lasers | p. 73 |
| Er:YAG | p. 73 |
| Er:Glass | p. 75 |
| Tunable Lasers | p. 79 |
| Alexandrite Laser | p. 84 |
| Ti:Sapphire | p. 88 |
| Cr:LiSAF | p. 91 |
| Tm:YAG | p. 94 |
| Yb:YAG | p. 97 |
| Laser Oscillator | p. 102 |
| Operation at Threshold | p. 103 |
| Gain Saturation | p. 108 |
| Circulating Power | p. 109 |
| Oscillator Performance Model | p. 111 |
| Conversion of Input to Output Energy | p. 112 |
| Laser Output | p. 118 |
| Relaxation Oscillations | p. 128 |
| Theory | p. 128 |
| Spike Suppression | p. 132 |
| Gain Switching | p. 133 |
| Examples of Laser Oscillators | p. 134 |
| Lamp-Pumped cw Nd:YAG Laser | p. 134 |
| Diode Side-Pumped Nd:YAG Laser | p. 139 |
| End-Pumped Systems | p. 148 |
| Ring Laser | p. 152 |
| Laser Amplifier | p. 156 |
| Single- and Multiple-Pass Pulse Amplifiers | p. 157 |
| Pulse Amplification | p. 158 |
| Nd:YAG Amplifiers | p. 163 |
| Nd:Glass Amplifiers | p. 171 |
| Multipass Amplifier Configurations | p. 177 |
| Regenerative Amplifiers | p. 180 |
| cw Amplifiers | p. 188 |
| Signal Distortions | p. 190 |
| Spatial Distortions | p. 190 |
| Temporal Distortions | p. 193 |
| Depopulation Losses | p. 194 |
| Amplified Spontaneous Emission | p. 195 |
| Prelasing and Parasitic Modes | p. 198 |
| Reduction of Depopulation Losses | p. 199 |
| Self-Focusing | p. 200 |
| Whole-Beam Self-Focusing | p. 201 |
| Examples of Self-focusing in Nd:YAG Lasers | p. 203 |
| Small-Scale Self-Focusing | p. 206 |
| Suppression of Self-Focusing | p. 207 |
| Optical Resonator | p. 210 |
| Transverse Modes | p. 210 |
| Intensity Distribution | p. 211 |
| Characteristics of a Gaussian Beam | p. 215 |
| Resonator Configurations | p. 217 |
| Stability of Laser Resonators | p. 221 |
| Diffraction Losses | p. 223 |
| Higher-Order Modes | p. 224 |
| Mode Selection | p. 227 |
| Active Resonator | p. 231 |
| Examples of Resonator Designs | p. 238 |
| Resonator Modeling and Software Packages | p. 254 |
| Longitudinal Modes | p. 255 |
| The Fabry-Perot Interferometer | p. 255 |
| Laser Resonator with Gain Medium | p. 259 |
| Longitudinal Mode Control | p. 263 |
| Injection Seeding | p. 268 |
| Intensity and Frequency Control | p. 271 |
| Amplitude Fluctuations | p. 271 |
| Frequency Tuning | p. 274 |
| Frequency Locking | p. 276 |
| Hardware Design | p. 278 |
| Unstable Resonators | p. 282 |
| Confocal Positive-Branch Unstable Resonator | p. 284 |
| Negative-Branch Unstable Resonator | p. 287 |
| Variable Reflectivity Output Couplers | p. 289 |
| Gain, Mode Size, and Alignment Sensitivity | p. 295 |
| Wavelength Selection | p. 297 |
| Optical Pump Systems | p. 300 |
| Pump Sources | p. 300 |
| Flashlamps | p. 303 |
| Continuous Arc Lamps | p. 334 |
| Laser Diodes | p. 340 |
| Pump Radiation Transfer Methods | p. 366 |
| Side-Pumping with Lamps | p. 368 |
| Side-Pumping with Diodes | p. 393 |
| End-Pumped Lasers | p. 407 |
| Face-Pumped Disks | p. 418 |
| Thermo-Optic Effects | p. 423 |
| Cylindrical Geometry | p. 426 |
| Temperature Distribution | p. 426 |
| Thermal Stresses | p. 437 |
| Photoelastic Effects | p. 440 |
| Thermal Lensing | p. 442 |
| Stress Birefringence | p. 445 |
| Compensation of Optical Distortions | p. 449 |
| Slab and Disk Geometries | p. 457 |
| Rectangular-Slab Laser | p. 458 |
| Slab Laser with Zigzag Optical Path | p. 461 |
| Disk Amplifiers and Lasers | p. 469 |
| End-Pumped Configurations | p. 473 |
| Thermal Gradients and Stress | p. 473 |
| Thermal Lensing | p. 477 |
| Thermal Fracture Limit | p. 479 |
| Thermal Management | p. 481 |
| Liquid Cooling | p. 481 |
| Conduction Cooling | p. 485 |
| Air/Gas Cooling | p. 486 |
| Q-Switching | p. 488 |
| Q-Switch Theory | p. 488 |
| Fast Q-Switch | p. 490 |
| Slow Q-Switching | p. 493 |
| Continuously Pumped, Repetitively Q-Switched Systems | p. 494 |
| Mechanical Q-Switches | p. 498 |
| Electro-Optical Q-Switches | p. 499 |
| KDP and KD*P Pockels Cells | p. 502 |
| LiNbO[subscript 3] Pockels Cells | p. 506 |
| Prelasing and Postlasing | p. 508 |
| Depolarization Losses | p. 511 |
| Drivers for Electro-Optic Q-Switches | p. 514 |
| Acousto-Optic Q-Switches | p. 514 |
| Bragg Reflection | p. 516 |
| Device Characteristics | p. 519 |
| Passive Q-Switches | p. 522 |
| Cavity Dumping | p. 529 |
| Mode Locking | p. 534 |
| Pulse Formation | p. 535 |
| Passive Mode Locking | p. 542 |
| Liquid Dye Saturable Absorber | p. 543 |
| Coupled-Cavity Mode Locking | p. 546 |
| Kerr Lens Mode Locking | p. 548 |
| Semiconductor Saturable Absorber Mirror (SESAM) | p. 556 |
| Active Mode Locking | p. 560 |
| cw Mode Locking | p. 561 |
| Transient Active Mode Locking | p. 564 |
| Picosecond Lasers | p. 568 |
| AM Mode Locking | p. 569 |
| FM Mode Locking | p. 572 |
| Femtosecond Lasers | p. 575 |
| Laser Materials | p. 575 |
| Dispersion Compensation | p. 576 |
| Examples of Kerr Lens or SESAM Mode-Locked Femtosecond Lasers | p. 579 |
| Chirped Pulse Amplifiers | p. 584 |
| Nonlinear Devices | p. 587 |
| Nonlinear Optical Effects | p. 587 |
| Second-Order Nonlinearities | p. 589 |
| Third-Order Nonlinearities | p. 590 |
| Harmonic Generation | p. 592 |
| Basic Theory of Second Harmonic Generation | p. 594 |
| Phase Matching | p. 602 |
| Properties of Nonlinear Crystals | p. 611 |
| Intracavity Frequency Doubling | p. 618 |
| Third Harmonic Generation | p. 625 |
| Examples of Harmonic Generation | p. 629 |
| Optical Parametric Oscillators | p. 634 |
| Performance Modeling | p. 637 |
| Crystals | p. 649 |
| Quasi Phase Matching | p. 652 |
| Design and Performance | p. 655 |
| Raman Laser | p. 662 |
| Theory | p. 663 |
| Device Implementation | p. 666 |
| Optical Phase Conjugation | p. 669 |
| Basic Considerations | p. 669 |
| Material Properties | p. 671 |
| Focusing Geometry | p. 673 |
| Pump-Beam Properties | p. 673 |
| System Design | p. 676 |
| Damage of Optical Elements | p. 680 |
| Surface Damage | p. 681 |
| Inclusion Damage | p. 684 |
| Damage Threshold of Optical Materials | p. 684 |
| Scaling Laws | p. 685 |
| Laser Host Materials | p. 688 |
| Optical Glass | p. 689 |
| Nonlinear Crystals | p. 690 |
| Dielectric Thin Films | p. 694 |
| System Design Considerations | p. 698 |
| Choice of Materials | p. 698 |
| Design of System | p. 699 |
| System Operation | p. 700 |
| Laser Safety | p. 702 |
| Conversion Factors and Constants | p. 708 |
| Definition of Symbols | p. 711 |
| References | p. 716 |
| Subject Index | p. 742 |
| Table of Contents provided by Ingram. All Rights Reserved. |