1. Functions
1.1 Review of Functions
1.2 Representing Functions
1.3 Trigonometric Functions
2. Limits
2.1 The Idea of Limits
2.2 Definitions of Limits
2.3 Techniques for Computing Limits
2.4 Infinite Limits
2.5 Limits at Infinity
2.6 Continuity
2.7 Precise Definitions of Limits
3. Derivatives
3.1 Introducing the Derivative
3.2 The Derivative as a Function
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules
3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change
3.7 The Chain Rule
3.8 Implicit Differentiation
3.9 Related Rates
4. Applications of the Derivative
4.1 Maxima and Minima
4.2 Mean Value Theorem
4.3 What Derivatives Tell Us
4.4 Graphing Functions
4.5 Optimization Problems
4.6 Linear Approximation and Differentials
4.7 L'Hopital's Rule
4.8 Newton's Method
4.9 Antiderivatives
5. Integration
5.1 Approximating Areas under Curves
5.2 Definite Integrals
5.3 Fundamental Theorem of Calculus
5.4 Working with Integrals
5.5 Substitution Rule
6. Applications of Integration
6.1 Velocity and Net Change
6.2 Regions Between Curves
6.3 Volume by Slicing
6.4 Volume by Shells
6.5 Length of Curves
6.6 Surface Area
6.7 Physical Applications
7. Logarithmic and Exponential Functions
7.1 Inverse Functions
7.2 The Natural Logarithmic and Exponential Functions
7.3 Logarithmic and Exponential Functions with Other Bases
7.4 Exponential Models
7.5 Inverse Trigonometric Functions
7.6 L' Hopital's Rule and Growth Rates of Functions
7.7 Hyperbolic Functions
8. Integration Techniques
8.1 Basic Approaches
8.2 Integration by Parts
8.3 Trigonometric Integrals
8.4 Trigonometric Substitutions
8.5 Partial Fractions
8.6 Integration Strategies
8.7 Other Methods of Integration
8.8 Numerical Integration
8.9 Improper Integrals
Review Exercises
9. Differential Equations
9.1 Basic Ideas
9.2 Direction Fields and Euler's Method
9.3 Separable Differential Equations
9.4 Special First-Order Linear Differential Equations
9.5 Modeling with Differential Equations
Review Exercises
10. Sequences and Infinite Series
10.1 An Overview
10.2 Sequences
10.3 Infinite Series
10.4 The Divergence and Integral Tests
10.5 Comparison Tests
10.6 Alternating Series
10.7 The Ratio and Root Tests
10.8 Choosing a Convergence Test
Review Exercises
11. Power Series
11.1 Approximating Functions with Polynomials
11.2 Properties of Power Series
11.3 Taylor Series
11.4 Working with Taylor Series
Review Exercises
12. Parametric and Polar Curves
12.1 Parametric Equations
12.2 Polar Coordinates
12.3 Calculus in Polar Coordinates
12.4 Conic Sections
Review Exercises
D2 Second-Order Differential Equations ONLINE
D2.1 Basic Ideas
D2.2 Linear Homogeneous Equations
D2.3 Linear Nonhomogeneous Equations
D2.4 Applications
D2.5 Complex Forcing Functions
Review Exercises
Appendix A. Proofs of Selected Theorems
Appendix B. Algebra Review ONLINE
Appendix C. Complex Numbers ONLINE
Answers
Index
Table of Integrals