Get Free Shipping on orders over $79
Single-Instruction Multiple-Data Execution - Christopher J. Hughes

Single-Instruction Multiple-Data Execution

By: Christopher J. Hughes

eText | 31 May 2022

At a Glance

eText


$74.99

or 4 interest-free payments of $18.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Having hit power limitations to even more aggressive out-of-order execution in processor cores, many architects in the past decade have turned to single-instruction-multiple-data (SIMD) execution to increase single-threaded performance. SIMD execution, or having a single instruction drive execution of an identical operation on multiple data items, was already well established as a technique to efficiently exploit data parallelism. Furthermore, support for it was already included in many commodity processors. However, in the past decade, SIMD execution has seen a dramatic increase in the set of applications using it, which has motivated big improvements in hardware support in mainstream microprocessors. The easiest way to provide a big performance boost to SIMD hardware is to make it wider—i.e., increase the number of data items hardware operates on simultaneously. Indeed, microprocessor vendors have done this. However, as we exploit more data parallelism in applications, certain challenges can negatively impact performance. In particular, conditional execution, non-contiguous memory accesses, and the presence of some dependences across data items are key roadblocks to achieving peak performance with SIMD execution. This book first describes data parallelism, and why it is so common in popular applications. We then describe SIMD execution, and explain where its performance and energy benefits come from compared to other techniques to exploit parallelism. Finally, we describe SIMD hardware support in current commodity microprocessors. This includes both expected design tradeoffs, as well as unexpected ones, as we work to overcome challenges encountered when trying to map real software to SIMD execution.
on
Desktop
Tablet
Mobile

More in Circuits & Components

Handbook of Computer Architecture - Anupam Chattopadhyay

eBOOK

RRP $969.00

$872.99

10%
OFF