Get Free Shipping on orders over $79
Semiconductor Nanostructures : Quantum states and electronic transport - Thomas Ihn

Semiconductor Nanostructures

Quantum states and electronic transport

By: Thomas Ihn

eText | 4 December 2009

At a Glance

eText


$87.30

or 4 interest-free payments of $21.82 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
This textbook describes the physics of semiconductor nanostructures with emphasis on their electronic transport properties. At its heart are five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect, and the Coulomb blockade effect.
The book starts out with the basics of solid state and semiconductor physics, such as crystal structure, band structure, and effective mass approximation, including spin-orbit interaction effects important for research in semiconductor spintronics. It contains material aspects such as band engineering, doping, gating, and a selection of nanostructure fabrication techniques. The book discusses the Drude-Boltzmann-Sommerfeld transport theory as well as conductance quantization and the Landauer-Buttiker theory. These concepts are extended to mesoscopic interference phenomena and decoherence, magnetotransport, and interaction effects in quantum-confined systems, guiding the reader from fundamental effects to specialized state-of-the-art experiments.
The book will provide a thorough introduction into the topic for graduate and PhD students, and will be a useful reference for lecturers and researchers working in the field.
on
Desktop
Tablet
Mobile

More in Semi-Conductors & Super-Conductors