Get Free Shipping on orders over $79
Regression Analysis for Statistics & Machine Learning in R - Minerva Singh

Regression Analysis for Statistics & Machine Learning in R

By: Minerva Singh

eText | 28 November 2019 | Edition Number 1

At a Glance

eText


$285.99

or 4 interest-free payments of $71.50 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

With so many R Statistics and Machine Learning courses around, why enroll for this?

Regression analysis is one of the central aspects of both Statistics and Machine Learning based analysis. This course will teach you Regression analysis for both Statistical data analysis and ML in R. It explores relevant concepts in a practical way, from basic to expert level. This course can help you achieve better grades, gain new analysis tools for your academic career, implement your knowledge in a work setting, and make business forecasting-related decisions. You will go all the way from implementing and inferring simple OLS (Ordinary Least Square) regression models to dealing with issues of multicollinearity in regression to ML based regression models.

Become a Regression analysis expert and harness the power of R for your analysis

• Get started with R and RStudio. Install these on your system, learn to load packages, and read in different types of data in R

• Carry out data cleaning and data visualization using R

• Implement Ordinary Least Square (OLS) regression in R and learn how to interpret the results.

• Learn how to deal with multicollinearity both through the variable selection and regularization techniques such as ridge regression

• Carry out variable and regression model selection using both statistical and machine learning techniques, including using cross-validation methods.

• Evaluate the regression model accuracy

• Implement Generalized Linear Models (GLMs) such as logistic regression and Poisson regression. Use logistic regression as a binary classifier to distinguish between male and female voices.

• Use non-parametric techniques such as Generalized Additive Models (GAMs) to work with non-linear and non-parametric data.

• Work with tree-based ML models

All the code and supporting files for this course are available at - https://github.com/PacktPublishing/Regression-Analysis-for-Statistics-and-Machine-Learning-in-R

on
Desktop
Tablet
Mobile

More in Computer Science

Amazon.com : Get Big Fast - Robert Spector

eBOOK

AI-Powered Search - Trey Grainger

eBOOK