| Foreword | p. vii |
| Preface | p. xi |
| Acknowledgments | p. xiii |
| Qubits | p. 1 |
| Quantum state purity | p. 5 |
| The representation of qubits | p. 8 |
| Stokes parameters | p. 11 |
| Single-qubit gates | p. 14 |
| The double-slit experiment | p. 18 |
| The Mach-Zehnder interferometer | p. 23 |
| Quantum coherence and information processing | p. 25 |
| Measurements and quantum operations | p. 29 |
| The von Neumann classification of processes | p. 32 |
| The Pauli classification of measurements | p. 34 |
| Expectation values and the von Neumann projection | p. 35 |
| The Luders rule | p. 37 |
| Reduced statistical operators | p. 38 |
| General quantum operations | p. 39 |
| Positive-operator-valued measures | p. 41 |
| Quantum nonlocality and interferometry | p. 45 |
| Hidden variables and state completeness | p. 46 |
| Von Neumann's "no-go" theorem | p. 48 |
| The Einstein-Podolsky-Rosen argument | p. 49 |
| Gleason's theorem | p. 51 |
| Bell inequalities | p. 52 |
| Interferometric complementarity | p. 57 |
| The Franson interferometer | p. 61 |
| Two-qubit quantum gates | p. 63 |
| Classical information and communication | p. 67 |
| Communication channels | p. 68 |
| Shannon entropy | p. 70 |
| Renyi entropy | p. 74 |
| Coding | p. 74 |
| Error correction | p. 77 |
| Data compression | p. 78 |
| Communication complexity | p. 79 |
| Quantum information | p. 81 |
| Quantum entropy | p. 82 |
| Quantum relative and conditional entropies | p. 84 |
| Quantum mutual information | p. 85 |
| Fidelity and coherent information | p. 86 |
| Quantum Renyi and Tsallis entropies | p. 88 |
| Quantum entanglement | p. 91 |
| Basic definitions | p. 92 |
| The Schmidt decomposition | p. 94 |
| Special bases and decompositions | p. 95 |
| Stokes parameters and entanglement | p. 98 |
| Partial transpose and reduction criteria | p. 99 |
| The "fundamental postulate" | p. 101 |
| Entanglement monotones | p. 102 |
| Distillation and bound entanglement | p. 104 |
| Entanglement and majorization | p. 105 |
| Concurrence | p. 106 |
| Entanglement witnesses | p. 107 |
| Entanglement as a resource | p. 108 |
| The thermodynamic analogy | p. 109 |
| Information and the foundations of physics | p. 112 |
| The geometry of entanglement | p. 114 |
| Creating entangled photons | p. 115 |
| Entangled multipartite systems | p. 121 |
| Stokes and correlation tensors | p. 124 |
| N-tangle | p. 126 |
| Generalized Schmidt decomposition | p. 127 |
| Lorentz-group isometries | p. 127 |
| Entanglement classes | p. 129 |
| Algebraic invariants of multipartite systems | p. 131 |
| Three-qubit states and residual tangle | p. 133 |
| Three-qubit quantum logic gates | p. 135 |
| States of higher qubit number | p. 136 |
| Quantum state and process estimation | p. 139 |
| Quantum state tomography | p. 140 |
| Quantum process tomography | p. 143 |
| Direct estimation methods | p. 144 |
| Quantum communication | p. 147 |
| Quantum channels | p. 148 |
| Quantum channel capacities | p. 149 |
| Holevo's theorem | p. 151 |
| Discrimination of quantum states | p. 153 |
| The no-cloning theorem | p. 156 |
| Basic quantum channels | p. 157 |
| The GHJW theorem | p. 159 |
| Quantum dense coding | p. 160 |
| Quantum teleportation | p. 162 |
| Entanglement "swapping" | p. 164 |
| Entanglement "purification" | p. 165 |
| Quantum data compression | p. 167 |
| Quantum communication complexity | p. 169 |
| Quantum decoherence and its mitigation | p. 171 |
| Quantum decoherence | p. 172 |
| Decoherence and mixtures | p. 173 |
| Decoherence-free subspaces | p. 174 |
| Quantum coding, error detection, and correction | p. 175 |
| The nine-qubit Shor code | p. 179 |
| Stabilizer codes | p. 181 |
| Concatenation of quantum codes | p. 183 |
| Quantum broadcasting, copying, and deleting | p. 185 |
| Quantum broadcasting | p. 185 |
| Quantum copying | p. 186 |
| Quantum deleting | p. 189 |
| Landauer's principle | p. 190 |
| Quantum key distribution | p. 191 |
| Cryptography and cryptosystems | p. 191 |
| QKD systems | p. 193 |
| The BB84 (four-state) protocol | p. 195 |
| The E91 (Ekert) protocol | p. 197 |
| The B92 (two-state) protocol | p. 198 |
| The six-state protocol | p. 199 |
| Eavesdropping | p. 199 |
| Security proofs | p. 201 |
| Classical and quantum computing | p. 203 |
| Classical computing and computational complexity | p. 204 |
| Deterministic Turing machines | p. 206 |
| Probabilistic Turing machines | p. 207 |
| Multi-tape Turing machines | p. 208 |
| Quantum Turing machines | p. 209 |
| Quantum computational complexity | p. 211 |
| Fault-tolerant quantum computing | p. 214 |
| Linear optical quantum computation | p. 215 |
| Quantum algorithms | p. 219 |
| The Deutsch-Jozsa algorithm | p. 220 |
| The Grover search algorithm | p. 221 |
| The Shor factoring algorithm | p. 224 |
| The Simon algorithm | p. 229 |
| Mathematical elements | p. 231 |
| Boolean algebra and Galois fields | p. 231 |
| Random variables | p. 232 |
| Vector Spaces and Hilbert space | p. 233 |
| The standard quantum formalism | p. 237 |
| The Dirac notation | p. 237 |
| Groups of transformations | p. 239 |
| Probability, lattices, and posets | p. 240 |
| Projectors, correlations, and the Kochen-Specker theorem | p. 242 |
| Traditional quantum logic | p. 243 |
| The quantum postulates | p. 245 |
| The standard postulates | p. 245 |
| The Heisenberg-Robertson uncertainty relation | p. 247 |
| Liouville space and open quantum systems | p. 248 |
| References | p. 249 |
| Index | p. 271 |
| Table of Contents provided by Ingram. All Rights Reserved. |