Get Free Shipping on orders over $79
Procedural Content Generation via Machine Learning : An Overview - Matthew Guzdial

Procedural Content Generation via Machine Learning

An Overview

By: Matthew Guzdial, Sam Snodgrass, Adam Summerville

eText | 30 May 2025 | Edition Number 2

At a Glance

eText


$64.99

or 4 interest-free payments of $16.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This second edition updates and expands upon the first beginner-focused guide to Procedural Content Generation via Machine Learning (PCGML), which is the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content. The authors survey current and future approaches to generating video game content and illustrate the major impact that PCGML has had on video games industry. In order to provide the most up-to-date information, this new edition incorporates the last two years of research and advancements in this rapidly developing area. The book guides readers on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis. The authors discuss the practical and ethical considerations for PCGML projects and demonstrate how to avoid the common pitfalls. This second edition also introduces a new chapter on Generative AI, which covers the benefits, risks, and methods for applying pre-trained transformers to PCG problems.

on
Desktop
Tablet
Mobile

More in Probability & Statistics