| Preface | p. xvii |
| Acknowledgments | p. xix |
| Basics | p. 1 |
| Introduction | p. 3 |
| Uncertainty in Robotics | p. 3 |
| Probabilistic Robotics | p. 4 |
| Implications | p. 9 |
| Road Map | p. 10 |
| Teaching Probabilistic Robotics | p. 11 |
| Bibliographical Remarks | p. 11 |
| Recursive State Estimation | p. 13 |
| Introduction | p. 13 |
| Basic Concepts in Probability | p. 14 |
| Robot Environment Interaction | p. 19 |
| Bayes Filters | p. 26 |
| Representation and Computation | p. 34 |
| Summary | p. 35 |
| Bibliographical Remarks | p. 36 |
| Exercises | p. 36 |
| Gaussian Filters | p. 39 |
| Introduction | p. 39 |
| The Kalman Filter | p. 40 |
| The Extended Kalman Filter | p. 54 |
| The Unscented Kalman Filter | p. 65 |
| The Information Filter | p. 71 |
| Summary | p. 79 |
| Bibliographical Remarks | p. 81 |
| Exercises | p. 81 |
| Nonparametric Filters | p. 85 |
| The Histogram Filter | p. 86 |
| Binary Bayes Filters with Static State | p. 94 |
| The Particle Filter | p. 96 |
| Summary | p. 113 |
| Bibliographical Remarks | p. 114 |
| Exercises | p. 115 |
| Robot Motion | p. 117 |
| Introduction | p. 117 |
| Preliminaries | p. 118 |
| Velocity Motion Model | p. 121 |
| Odometry Motion Model | p. 132 |
| Motion and Maps | p. 140 |
| Summary | p. 143 |
| Bibliographical Remarks | p. 145 |
| Exercises | p. 145 |
| Robot Perception | p. 149 |
| Introduction | p. 149 |
| Maps | p. 152 |
| Beam Models of Range Finders | p. 153 |
| Likelihood Fields for Range Finders | p. 169 |
| Correlation-Based Measurement Models | p. 174 |
| Feature-Based Measurement Models | p. 176 |
| Practical Considerations | p. 182 |
| Summary | p. 183 |
| Bibliographical Remarks | p. 184 |
| Exercises | p. 185 |
| Localization | p. 189 |
| Mobile Robot Localization: Markov and Gaussian | p. 191 |
| A Taxonomy of Localization Problems | p. 193 |
| Markov Localization | p. 197 |
| Illustration of Markov Localization | p. 200 |
| EKF Localization | p. 201 |
| Estimating Correspondences | p. 215 |
| Multi-Hypothesis Tracking | p. 218 |
| UKF Localization | p. 220 |
| Practical Considerations | p. 229 |
| Summary | p. 232 |
| Bibliographical Remarks | p. 233 |
| Exercises | p. 234 |
| Mobile Robot Localization: Grid And Monte Carlo | p. 237 |
| Introduction | p. 237 |
| Grid Localization | p. 238 |
| Monte Carlo Localization | p. 250 |
| Localization in Dynamic Environments | p. 267 |
| Practical Considerations | p. 273 |
| Summary | p. 274 |
| Bibliographical Remarks | p. 275 |
| Exercises | p. 276 |
| Mapping | p. 279 |
| Occupancy Grid Mapping | p. 281 |
| Introduction | p. 281 |
| The Occupancy Grid Mapping Algorithm | p. 284 |
| Learning Inverse Measurement Models | p. 294 |
| Maximum A Posteriori Occupancy Mapping | p. 299 |
| Summary | p. 304 |
| Bibliographical Remarks | p. 305 |
| Exercises | p. 307 |
| Simultaneous Localization and Mapping | p. 309 |
| Introduction | p. 309 |
| SLAM with Extended Kalman Filters | p. 312 |
| EKF SLAM with Unknown Correspondences | p. 323 |
| Summary | p. 330 |
| Bibliographical Remarks | p. 332 |
| Exercises | p. 334 |
| The GraphSLAM Algorithm | p. 337 |
| Introduction | p. 337 |
| Intuitive Description | p. 340 |
| The GraphSLAM Algorithm | p. 346 |
| Mathematical Derivation of GraphSLAM | p. 353 |
| Data Association in GraphSLAM | p. 362 |
| Efficiency Consideration | p. 368 |
| Empirical Implementation | p. 370 |
| Alternative Optimization Techniques | p. 376 |
| Summary | p. 379 |
| Bibliographical Remarks | p. 381 |
| Exercises | p. 382 |
| The Sparse Extended Information Filter | p. 385 |
| Introduction | p. 385 |
| Intuitive Description | p. 388 |
| The SEIF SLAM Algorithm | p. 391 |
| Mathematical Derivation of the SEIF | p. 395 |
| Sparsification | p. 398 |
| Amortized Approximate Map Recovery | p. 402 |
| How Sparse Should SEIFs Be? | p. 405 |
| Incremental Data Association | p. 409 |
| Branch-and-Bound Data Association | p. 415 |
| Practical Considerations | p. 420 |
| Multi-Robot SLAM | p. 424 |
| Summary | p. 432 |
| Bibliographical Remarks | p. 434 |
| Exercises | p. 435 |
| The FastSLAM Algorithm | p. 437 |
| The Basic Algorithm | p. 439 |
| Factoring the SLAM Posterior | p. 439 |
| FastSLAM with Known Data Association | p. 444 |
| Improving the Proposal Distribution | p. 451 |
| Unknown Data Association | p. 457 |
| Map Management | p. 459 |
| The FastSLAM Algorithms | p. 460 |
| Efficient Implementation | p. 460 |
| FastSLAM for Feature-Based Maps | p. 468 |
| Grid-based FastSLAM | p. 474 |
| Summary | p. 479 |
| Bibliographical Remarks | p. 481 |
| Exercises | p. 482 |
| Planning and Control | p. 485 |
| Markov Decision Processes | p. 487 |
| Motivation | p. 487 |
| Uncertainty in Action Selection | p. 490 |
| Value Iteration | p. 495 |
| Application to Robot Control | p. 503 |
| Summary | p. 507 |
| Bibliographical Remarks | p. 509 |
| Exercises | p. 510 |
| Partially Observable Markov Decision Processes | p. 513 |
| Motivation | p. 513 |
| An Illustrative Example | p. 515 |
| The Finite World POMDP Algorithm | p. 527 |
| Mathematical Derivation of POMDPs | p. 531 |
| Practical Considerations | p. 536 |
| Summary | p. 541 |
| Bibliographical Remarks | p. 542 |
| Exercises | p. 544 |
| Approximate POMDP Techniques | p. 547 |
| Motivation | p. 547 |
| QMDPs | p. 549 |
| Augmented Markov Decision Processes | p. 550 |
| Monte Carlo POMDPs | p. 559 |
| Summary | p. 565 |
| Bibliographical Remarks | p. 566 |
| Exercises | p. 566 |
| Exploration | p. 569 |
| Introduction | p. 569 |
| Basic Exploration Algorithms | p. 571 |
| Active Localization | p. 575 |
| Exploration for Learning Occupancy Grid Maps | p. 580 |
| Exploration for SLAM | p. 593 |
| Summary | p. 600 |
| Bibliographical Remarks | p. 602 |
| Exercises | p. 604 |
| Bibliography | p. 607 |
| Index | p. 639 |
| Table of Contents provided by Ingram. All Rights Reserved. |