Get Free Shipping on orders over $79
Preference-based Spatial Co-location Pattern Mining : Computer Science (R0) - Lizhen Wang

Preference-based Spatial Co-location Pattern Mining

By: Lizhen Wang, Yuan Fang, Lihua Zhou

eText | 4 January 2022

At a Glance

eText


$219.00

or 4 interest-free payments of $54.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

The development of information technology has made it possible to collect large amounts of spatial data on a daily basis. It is of enormous significance when it comes to discovering implicit, non-trivial and potentially valuable information from this spatial data. Spatial co-location patterns reveal the distribution rules of spatial features, which can be valuable for application users. This book provides commercial software developers with proven and effective algorithms for detecting and filtering these implicit patterns, and includes easily implemented pseudocode for all the algorithms. Furthermore, it offers a basis for further research in this promising field.

Preference-based co-location pattern mining refers to mining constrained or condensed co-location patterns instead of mining all prevalent co-location patterns. Based on the authors' recent research, the book highlights techniques for solving a range of problems in this context, including maximal co-location pattern mining, closed co-location pattern mining, top-k co-location pattern mining, non-redundant co-location pattern mining, dominant co-location pattern mining, high utility co-location pattern mining, user-preferred co-location pattern mining, and similarity measures between spatial co-location patterns.

Presenting a systematic, mathematical study of preference-based spatial co-location pattern mining, this book can be used both as a textbook for those new to the topic and as a reference resource for experienced professionals.

on
Desktop
Tablet
Mobile

More in Computer Science

Amazon.com : Get Big Fast - Robert Spector

eBOOK

This is For Everyone - Tim Berners-Lee

eBOOK