Contents
Preface vii
Acknowledgments ix
Author xi
- Introduction 1
1.1 Recursive Sequences . . . . . . . . . . . . . . . . . . . . . . . 3
- Order and Explicit Solution of a â.E. . . . . . . . . . . . . . 5
- Non-Autonomous Difference Equations . . . . . . . . . . . . 6
1.4 Periodic Sequences . . . . . . . . . . . . . . . . . . . . . . . . 7
- Alternating Periodic Cycles . . . . . . . . . . . . . . . . . . . 12
- Specific Patterns of Periodic Cycles . . . . . . . . . . . . . . 13
- Eventually Periodic Sequences . . . . . . . . . . . . . . . . . 14
1.8 Piece-wise Sequences . . . . . . . . . . . . . . . . . . . . . . 18
1.9 Chapter 1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 20
- Linear Difference Equations 25
- Autonomous Linear Difference Equations . . . . . . . . . . . 26
2.2 Non-Autonomous Linear â.E.âs . . . . . . . . . . . . . . . . 27
2.2.1 Multiplicative Form of Eq. (2.5) . . . . . . . . . . . . . 27
2.2.2 Additive Form of Eq. (2.5) . . . . . . . . . . . . . . . . 31
2.3 Chapter 2 Exercises . . . . . . . . . . . . . . . . . . . . . . . 40
- Riccati Difference Equations 43
3.1 First-Order Riccati â.E. . . . . . . . . . . . . . . . . . . . . 43
3.2 Second-Order Riccati â.E. . . . . . . . . . . . . . . . . . . . 50
3.3 Chapter 3 Exercises . . . . . . . . . . . . . . . . . . . . . . . 60
- Piece-wise Difference Equations 63
4.1 The Collatz Conjectures . . . . . . . . . . . . . . . . . . . . 64
4.2 The Tent-Map . . . . . . . . . . . . . . . . . . . . . . . . . . 65
- The Autonomous Neuron Model . . . . . . . . . . . . . . . . 72
- Autonomous Neuron Model when β = 1 . . . . . . . . 79
- Non-Autonomous Neuron Model . . . . . . . . . . . . . . . . 82
- Non-Autonomous Neuron Model when β0β1 = 1 . . . 88
4.5 The Williamson Model . . . . . . . . . . . . . . . . . . . . . 92
4.6 The West Nile Epidemics Model . . . . . . . . . . . . . . . . 93
4.7 Chapter 4 Exercises . . . . . . . . . . . . . . . . . . . . . . . 93
5 Max-Type Difference Equations 97
5.1 The Autonomous Case (Eq. [5.1]) . . . . . . . . . . . . . . . 97
- Eventually Periodic with Period-2 . . . . . . . . . . . 100
- Eventually Periodic with Period-4 . . . . . . . . . . . 109
- Eventually Periodic with Period-3 . . . . . . . . . . . 117
- Eventually Constant with K = 1 . . . . . . . . . . . . 125
5.2 The Non-Autonomous Case (Eq. [5.2]) . . . . . . . . . . . . . 130
- Eventually Periodic with Period-2 . . . . . . . . . . . 132
- Eventually Periodic with Period-4 . . . . . . . . . . . 140
- Eventually Periodic with Period-6 . . . . . . . . . . . 144
5.3 Chapter 5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 147
6 Appendices 149
6.1 Patterns of Sequences . . . . . . . . . . . . . . . . . . . . . . 149
6.2 Alternating Patterns of Sequences . . . . . . . . . . . . . . . 149
6.3 Finite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
- Convergent Infinite Series . . . . . . . . . . . . . . . . . . . . 150
- Periodicity and Modulo Arithmetic . . . . . . . . . . . . . . 151
- Alternating Periodicity . . . . . . . . . . . . . . . . . . 151
- Patterns as an Initial Value Problem . . . . . . . . . . . . . 152
- Specific Periodic Patterns . . . . . . . . . . . . . . . . . . . . 153
Bibliography 155
Index 157