Get Free Shipping on orders over $79
Orthogonal Latin Squares Based on Groups : Developments in Mathematics : Book 57 - Anthony B. Evans

Orthogonal Latin Squares Based on Groups

By: Anthony B. Evans

eText | 17 August 2018

At a Glance

eText


$239.00

or 4 interest-free payments of $59.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This monograph presents a unified exposition of latin squares and mutually orthogonal sets of latin squares based on groups. Its focus is on orthomorphisms and complete mappings of finite groups, while also offering a complete proof of the Hall-Paige conjecture. The use of latin squares in constructions of nets, affine planes, projective planes, and transversal designs also motivates this inquiry.

The text begins by introducing fundamental concepts, like the tests for determining whether a latin square is based on a group, as well as orthomorphisms and complete mappings. From there, it describes the existence problem for complete mappings of groups, building up to the proof of the Hall-Paige conjecture. The third part presents a comprehensive study of orthomorphism graphs of groups, while the last part provides a discussion of Cartesian projective planes, related combinatorial structures, and a list of open problems.

Expanding the author's 1992 monograph, Orthomorphism Graphs of Groups, this book is an essential reference tool for mathematics researchers or graduate students tackling latin square problems in combinatorics. Its presentation draws on a basic understanding of finite group theory, finite field theory, linear algebra, and elementary number theory—more advanced theories are introduced in the text as needed.

on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 20th December 2018

More in Algebra

Enriques Surfaces I - François Cossec

eTEXT

Finite Groups I - Bertram Huppert

eTEXT

$349.00

The Monodromy Group - Henryk ?o??dek

eTEXT

(Generalized) Fuzzy Matrices and Relations - Herbert Toth

eBOOK

RRP $226.36

$203.99

10%
OFF