Get Free Shipping on orders over $79
Multivariate Statistics : Classical Foundations and Modern Machine Learning - Hemant Ishwaran

Multivariate Statistics

Classical Foundations and Modern Machine Learning

By: Hemant Ishwaran

Hardcover | 30 March 2025 | Edition Number 1

At a Glance

Hardcover


$458.75

or 4 interest-free payments of $114.69 with

 or 

Ships in 15 to 25 business days

This book explores multivariate statistics from both traditional and modern perspectives. The first section covers core topics like multivariate normality, MANOVA, discrimination, PCA, and canonical correlation analysis. The second section includes modern concepts such as gradient boosting, random forests, variable importance, and causal inference.

A key theme is leveraging classical multivariate statistics to explain advanced topics and prepare for contemporary methods. For example, linear models provide a foundation for understanding regu-larization with AIC and BIC, leading to a deeper analysis of regularization through generalization error and the VC theorem. Discriminant analysis introduces the weighted Bayes rule, which leads into modern classification techniques for class-imbalanced machine learning problems. Steepest descent serves as a precursor to matching pursuit and gradient boosting. Axis-aligned trees like CART, a classical tool, set the stage for more recent methods like super greedy trees.

Another central theme is training error. Introductory courses often caution that reducing training error too aggressively can lead to overfitting. At the same time, training error, also referred to as empirical risk, is a foundational concept in statistical learning theory. In regression, training error corresponds to the residual sum of squares, and minimizing it results in the least squares solution, which can lead to overfitting. Regardless of this concern, empirical risk plays a pivotal role in evaluating the potential for effective learning. The principle of empirical risk minimization demonstrates that minimizing training error can be advantageous when paired with regularization. This idea is further examined through techniques such as penalization, matching pursuit, gradient boosting, and super greedy tree constructions.

Key Features:

• Covers both classical and contemporary multivariate statistics.
• Each chapter includes a carefully selected set of exercises that vary in degree of difficulty and are both applied and theoretical.
• The book can also serve as a reference for researchers due to the diverse topics covered, including new material on super greedy trees, rule-based variable selection, and machine learning for causal inference.
• Extensive treatment on trees that provides a comprehensive and unified approach to understanding trees in terms of partitions and empirical risk minimization.
• New content on random forests, including random forest quantile classifiers for class-imbalanced problems, multivariate random forests, subsampling for confidence regions, super greedy forests. An entire chapter is dedicated to random survival forests, featuring new material on random hazard forests extending survival forests to time-varying covariates.

More in Probability & Statistics

The Maths Book : Big Ideas Simply Explained - DK

RRP $42.99

$32.99

23%
OFF
The Art of Statistics : Learning from Data - David Spiegelhalter

RRP $26.99

$22.99

15%
OFF
Speed : How it Explains the World - Vaclav Smil

RRP $36.99

$29.75

20%
OFF
Sampling Theory and Practice - Casey Murphy
Practical Statistics - Nancy Maxwell

$463.75

Foundations of Statistics - Everett Davies
Psychology Statistics For Dummies : For Dummies - Donncha Hanna

RRP $49.95

$38.75

22%
OFF
Introduction to Medical Statistics : 4th edition - Martin Bland

RRP $70.95

$62.75

12%
OFF
On the Edge : The Art of Risking Everything - Nate Silver

RRP $36.99

$29.75

20%
OFF
Statistics without Tears : An Introduction for Non-Mathematicians - Derek Rowntree
Naked Statistics : Stripping the Dread from the Data - Charles Wheelan