Get Free Shipping on orders over $79
Multiobjective Heuristic Search : An Introduction to intelligent Search Methods for Multicriteria Optimization - Pallab Dasgupta

Multiobjective Heuristic Search

An Introduction to intelligent Search Methods for Multicriteria Optimization

By: Pallab Dasgupta, P. P. Chakrabarti, S. C. DeSarkar

eText | 11 November 2013

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
A large number of problems require the optimization of multiple criteria. These crite­ ria are often non-commensurate and sometimes conflicting in nature making the task of optimization more difficult. In such problems, the task of creating a combined opti­ mization function is often not easy. Moreover, the decision procedure can be affected by the sensitivity of the solution space, and the trade-off is often non-linear. In real life we traditionally handle such problems by suggesting not one, but several non-dominated solutions. Finding a set of non-dominated solutions is also useful in multistaged opti­ mization problems, where the solution of one stage of optimization is passed on to the next stage. One classic example is that of circuit design, where high-level synthesis, logic synthesis and layout synthesis comprise important stages of optimization of the circuit. Passing a set of non-dominated partial solutions from one stage to the next typically ensures better global optimization. This book presents a new approach to multi-criteria optimization based on heuristic search techniques. Classical multicriteria optimization techniques rely on single criteria optimization algorithms, and hence we are either required to optimize one criterion at a time (under constraints on the others), or we are asked for a single scalar combined optimization function. On the other hand, the multiobjective search approach maps each optimization criterion onto a distinct dimension of a vector valued cost structure.
on
Desktop
Tablet
Mobile

More in Computer Science

Amazon.com : Get Big Fast - Robert Spector

eBOOK

AI-Powered Search - Trey Grainger

eBOOK

Tissue Proteomics : Methods and Protocols - Taufika Islam Williams

eBOOK

RRP $369.00

$332.99

10%
OFF

This product is categorised by