Get Free Shipping on orders over $79
Manifold Learning : Model Reduction in Engineering - David Ryckelynck

Manifold Learning

Model Reduction in Engineering

By: David Ryckelynck, Nissrine Akkari, Fabien Casenave

Paperback | 29 March 2024

At a Glance

Paperback


$48.75

or 4 interest-free payments of $12.19 with

 or 

Ships in 5 to 7 business days

This Open Access book reviews recent theoretical and numerical developments in nonlinear model order reduction in continuum mechanics, being addressed to Master and PhD students, as well as to researchers, lecturers and instructors. The aim of the authors is to provide tools for a better understanding and implement reduced order models by using: physics-based models, synthetic data forecast by these models, experimental data and deep learning algorithms. The book involves a survey of key methods of model order reduction applied to model-based engineering and digital twining, by learning linear or nonlinear latent spaces.
Projection-based reduced order models are the projection of mechanical equations on a latent space that have been learnt from both synthetic data and experimental data. Various descriptions and representations of structured data for model reduction are presented in the applications and survey chapters. Image-based digital twins are developed in a reduced setting. Reduced order models of as-manufactured components predict the mechanical effects of shape variations. A similar workflow is extended to multiphysics or coupled problems, with high dimensional input fields. Practical techniques are proposed for data augmentation and also for hyper-reduction, which is a key point to speed up projection-based model order reduction of finite element models.

The book gives access to python libraries available on gitlab.com, which have been developed as part of the research program [FUI-25] MORDICUS funded by the French government. Similarly to deep learning for computer vision, deep learning for model order reduction circumvents the need to design parametric problems prior reducing models. Such an approach is highly relevant for image-base modelling or multiphysics modelling.

More in Probability & Statistics

The Maths Book : Big Ideas Simply Explained - DK

RRP $42.99

$33.99

21%
OFF
Speed : How it Explains the World - Vaclav Smil

RRP $36.99

$29.75

20%
OFF
The Art of Statistics : Learning from Data - David Spiegelhalter

RRP $26.99

$22.99

15%
OFF
Rationality : What It Is, Why It Seems Scarce, Why It Matters - Steven Pinker
Foundations of Statistics - Everett Davies
Sampling Theory and Practice - Casey Murphy
Practical Statistics - Nancy Maxwell

$463.99

Introduction to Medical Statistics : 4th edition - Martin Bland

RRP $70.95

$62.75

12%
OFF
Naked Statistics : Stripping the Dread from the Data - Charles Wheelan
Statistics without Tears : An Introduction for Non-Mathematicians - Derek Rowntree
On the Edge : The Art of Risking Everything - Nate Silver

RRP $36.99

$29.75

20%
OFF
Calling Bullshit : The Art of Scepticism in a Data-Driven World - Carl T. Bergstrom