Machine Learning : From the Classics to Deep Networks, Transformers, and Diffusion Models - Sergios Theodoridis

Machine Learning

From the Classics to Deep Networks, Transformers, and Diffusion Models

By: Sergios Theodoridis

Paperback | 1 March 2025 | Edition Number 3

At a Glance

Paperback


$338.75

or 4 interest-free payments of $84.69 with

 or 

Available: 1st March 2025

Preorder. Will ship when available.

Machine Learning: From the Classics to Deep Networks, Transformers, and Diffusion Models, Third edition, gives a unified perspective on machine learning by covering both pillars of supervised learning, namely regression and classification. The book starts with the basics, including mean square, least squares and maximum likelihood methods, ridge regression, Bayesian decision theory classification, logistic regression, and decision trees. It then progresses to more recent techniques, covering sparse modelling methods, learning in reproducing kernel Hilbert spaces and support vector machines, Bayesian inference with a focus on the EM algorithm and its approximate inference variational versions, Monte Carlo methods, probabilistic graphical models focusing on Bayesian networks, hidden Markov models and particle filtering. Dimensionality reduction and latent variables modelling are also considered in depth. This palette of techniques concludes with an extended chapter on neural networks and deep learning architectures. The book also covers the fundamentals of statistical parameter estimation, Wiener and Kalman filtering, convexity and convex optimization, including a chapter on stochastic approximation and the gradient descent family of algorithms, presenting related online learning techniques as well as concepts and algorithmic versions for distributed optimization. Focusing on the physical reasoning behind the mathematics, without sacrificing rigor, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. Most of the chapters include typical case studies and computer exercises, both in MATLAB and Python. The chapters are written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as courses on sparse modeling, deep learning, and probabilistic graphical models.

More in Electricity

Quantum Hall Effect : The First Topological Insulator - Saurabh Basu
The Invisible Rainbow : A History of Electricity and Life - Arthur Firstenberg
Engines : The Inner Workings of Machines That Move the World - Theodore Gray
Electricity and Magnetism : 3rd edition - Edward M. Purcell

RRP $112.95

$83.25

26%
OFF
Introduction to Electrodynamics : 5th Edition - David J. Griffiths

RRP $106.95

$90.95

15%
OFF
Principles of Electrochemical Conversion and Storage Devices - Kevin Huang
Basic Electrodynamics in 6 Lessons - Martin Poppe
Electromagnetic Fields for Engineers - Daniel S. Elliott
Semiconductors and Semimetals : Part 2: Volume 117 - Martin Hafermann

RRP $432.95

$326.75

25%
OFF
Concentrated Solar Power Systems - Bellamkonda Pragathi

RRP $232.95

$137.40

41%
OFF
Electric Machinery and Drives : An Electromagnetics Perspective - Nabeel A. O. Demerdash
The Best of Instructables Volume I : Oreilly - The Editors at Make Magazine and In Com

RRP $66.50

$31.75

52%
OFF
Electrostatics and Magnetostatics - Reiner M. Dreizler