Get Free Shipping on orders over $79
Machine Learning for Subsurface Characterization - Misra

Machine Learning for Subsurface Characterization

By: Misra, Li, He

Paperback | 13 October 2019 | Edition Number 1

At a Glance

Paperback


RRP $238.95

$215.75

10%OFF

or 4 interest-free payments of $53.94 with

 or 

Ships in 5 to 7 business days

To continue to meet demand while keeping costs down, petroleum and reservoir engineers know it is critical to utilize their asset's data through more complex modeling methods, and machine learning and data analytics is the known alternative approach to accurately represent the complexity of fluid-filled rocks. With a lack of training resources available, Machine Learning for Subsurface Characterization focuses on the development and application of neural networks, deep learning, unsupervised learning, reinforcement learning, and clustering methods for subsurface characterization under constraints. Such constraints are encountered during subsurface engineering operations due to financial, operational, regulatory, risk, technological, and environmental challenges.

This reference teaches how to do more with less. Used to develop tools and techniques of data-driven predictive modelling and machine learning for subsurface engineering and science, engineers will be introduced to methods of generating subsurface signals and analyzing the complex relationships within various subsurface signals using machine learning. Algorithmic procedures in MATLAB, R, PYTHON, and TENSORFLOW are displayed in text and through online instructional video to assist training and learning. Field cases are also presented to understand real-world applications, with a particular focus on examples involving shale reservoirs.

Explaining the concept of machine learning, advantages to the industry, and applications applied to complex subsurface rocks, Machine Learning for Subsurface Characterization delivers a missing piece to the reservoir engineer's toolbox needed to support today's complex operations.

  • Focus on applying predictive modelling and machine learning from real case studies and Q&A sessions at the end of each chapter
  • Learn how to develop codes such as MATLAB, PYTHON, R, and TENSORFLOW with step-by-step guides included
  • Visually learn code development with video demonstrations included

More in Technology in General

Breakneck : China's Quest to Engineer the Future - Dan Wang

RRP $55.00

$42.75

22%
OFF
The C Programming Language : Prentice Hall Software - Brian Kernighan

RRP $107.04

$72.99

32%
OFF
The Design of Everyday Things : Revised and Expanded Edition - Don Norman
Thing Explainer : Complicated Stuff in Simple Words - Randall Munroe
First Knowledges Innovation : Knowledge and Ingenuity - Ian J McNiven
Gilded Rage : Elon Musk and the Radicalization of Silicon Valley - Jacob Silverman
Longitude - Dava Sobel

Paperback

RRP $22.99

$20.75

10%
OFF
Concise Encyclopedia of Poultry Breeds - Fred Hams
Exactly : How Precision Engineers Created the Modern World - Simon Winchester
Epic Disruptions : 11 Innovations That Shaped Our Modern World - Scott D. Anthony
Invention : A Life of Learning through Failure - James Dyson

RRP $24.99

$18.75

25%
OFF
Nanomaterials in Industrial Chemistry - Muhammad Faheem

RRP $90.99

$89.75

Smart Global Value Chain : Future Innovations - Adarsh Garg
Source Code : My Beginnings - Bill Gates

RRP $55.00

$36.75

33%
OFF