Get Free Shipping on orders over $79
Machine Learning for Model Order Reduction : Engineering (R0) - Khaled Salah Mohamed

Machine Learning for Model Order Reduction

By: Khaled Salah Mohamed

eText | 2 March 2018

At a Glance

eText


$189.00

or 4 interest-free payments of $47.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

This Book discusses machine learning for model order reduction, which can be used in modern VLSI design to predict the behavior of an electronic circuit, via mathematical models that predict behavior. The author describes techniques to reduce significantly the time required for simulations involving large-scale ordinary differential equations, which sometimes take several days or even weeks. This method is called model order reduction (MOR), which reduces the complexity of the original large system and generates a reduced-order model (ROM) to represent the original one. Readers will gain in-depth knowledge of machine learning and model order reduction concepts, the tradeoffs involved with using various algorithms, and how to apply the techniques presented to circuit simulations and numerical analysis.

  • Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction;

  • Describes new, hybrid solutions for model order reduction;

  • Presents machine learning algorithms in depth, but simply;

  • Uses real, industrial applications to verify algorithms.

on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 4th January 2019

More in Circuits & Components