Get Free Shipping on orders over $79
Machine Learning for Imbalanced Data : Tackle imbalanced datasets using machine learning and deep learning techniques - Kumar Abhishek

Machine Learning for Imbalanced Data

Tackle imbalanced datasets using machine learning and deep learning techniques

By: Kumar Abhishek

eText | 1 December 2023 | Edition Number 1

At a Glance

eText


$61.59

or 4 interest-free payments of $15.40 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Take your machine learning expertise to the next level with this essential guide, utilizing libraries like imbalanced-learn, PyTorch, scikit-learn, pandas, and NumPy to maximize model performance and tackle imbalanced data

Key Features

  • Understand how to use modern machine learning frameworks with detailed explanations, illustrations, and code samples
  • Learn cutting-edge deep learning techniques to overcome data imbalance
  • Explore different methods for dealing with skewed data in ML and DL applications
  • Purchase of the print or Kindle book includes a free eBook in the PDF format

Book Description

As machine learning practitioners, we often encounter imbalanced datasets in which one class has considerably fewer instances than the other. Many machine learning algorithms assume an equilibrium between majority and minority classes, leading to suboptimal performance on imbalanced data. This comprehensive guide helps you address this class imbalance to significantly improve model performance.

Machine Learning for Imbalanced Data begins by introducing you to the challenges posed by imbalanced datasets and the importance of addressing these issues. It then guides you through techniques that enhance the performance of classical machine learning models when using imbalanced data, including various sampling and cost-sensitive learning methods.

As you progress, you'll delve into similar and more advanced techniques for deep learning models, employing PyTorch as the primary framework. Throughout the book, hands-on examples will provide working and reproducible code that'll demonstrate the practical implementation of each technique.

By the end of this book, you'll be adept at identifying and addressing class imbalances and confidently applying various techniques, including sampling, cost-sensitive techniques, and threshold adjustment, while using traditional machine learning or deep learning models.

What you will learn

  • Use imbalanced data in your machine learning models effectively
  • Explore the metrics used when classes are imbalanced
  • Understand how and when to apply various sampling methods such as over-sampling and under-sampling
  • Apply data-based, algorithm-based, and hybrid approaches to deal with class imbalance
  • Combine and choose from various options for data balancing while avoiding common pitfalls
  • Understand the concepts of model calibration and threshold adjustment in the context of dealing with imbalanced datasets

Who this book is for

This book is for machine learning practitioners who want to effectively address the challenges of imbalanced datasets in their projects. Data scientists, machine learning engineers/scientists, research scientists/engineers, and data scientists/engineers will find this book helpful. Though complete beginners are welcome to read this book, some familiarity with core machine learning concepts will help readers maximize the benefits and insights gained from this comprehensive resource.
on
Desktop
Tablet
Mobile

More in Computer Science

Amazon.com : Get Big Fast - Robert Spector

eBOOK

This is For Everyone - Tim Berners-Lee

eBOOK

ReFormat : Windows 11 - Adam Natad

eBOOK