Get Free Shipping on orders over $79
Machine Learning Algorithms - Second Edition : Popular algorithms for data science and machine learning, 2nd Edition - Giuseppe Bonaccorso

Machine Learning Algorithms - Second Edition

Popular algorithms for data science and machine learning, 2nd Edition

By: Giuseppe Bonaccorso

Paperback | 30 August 2018 | Edition Number 2

At a Glance

Paperback


$79.19

or 4 interest-free payments of $19.80 with

 or 

Ships in 5 to 7 business days

An easy-to-follow, step-by-step guide for getting to grips with the real-world application of machine learning algorithms

Key Features

  • Explore statistics and complex mathematics for data-intensive applications
  • Discover new developments in EM algorithm, PCA, and bayesian regression
  • Study patterns and make predictions across various datasets

Book Description

Machine learning has gained tremendous popularity for its powerful and fast predictions with large datasets. However, the true forces behind its powerful output are the complex algorithms involving substantial statistical analysis that churn large datasets and generate substantial insight.

This second edition of Machine Learning Algorithms walks you through prominent development outcomes that have taken place relating to machine learning algorithms, which constitute major contributions to the machine learning process and help you to strengthen and master statistical interpretation across the areas of supervised, semi-supervised, and reinforcement learning. Once the core concepts of an algorithm have been covered, you'll explore real-world examples based on the most diffused libraries, such as scikit-learn, NLTK, TensorFlow, and Keras. You will discover new topics such as principal component analysis (PCA), independent component analysis (ICA), Bayesian regression, discriminant analysis, advanced clustering, and gaussian mixture.

By the end of this book, you will have studied machine learning algorithms and be able to put them into production to make your machine learning applications more innovative.

What you will learn

  • Study feature selection and the feature engineering process
  • Assess performance and error trade-offs for linear regression
  • Build a data model and understand how it works by using different types of algorithm
  • Learn to tune the parameters of Support Vector Machines (SVM)
  • Explore the concept of natural language processing (NLP) and recommendation systems
  • Create a machine learning architecture from scratch

Who this book is for

Machine Learning Algorithms is for you if you are a machine learning engineer, data engineer, or junior data scientist who wants to advance in the field of predictive analytics and machine learning. Familiarity with R and Python will be an added advantage for getting the best from this book.

More in Computer Science

Microsoft Power BI For Dummies : For Dummies (Computer/Tech) - Jack A. Hyman
Creative Machines : AI, Art & Us - Maya Ackerman

RRP $57.95

$44.75

23%
OFF
Machine Learning For Dummies : For Dummies (Computer/Tech) - Luca Massaron
Microsoft 365 Excel All-in-One For Dummies : Excel for Dummies - David H. Ringstrom
Microsoft 365 Excel For Dummies : For Dummies (Computer/Tech) - David H. Ringstrom
New Beginnings : why change is so difficult and how to achieve it - Stefan Klein
The Tech Coup : How to Save Democracy from Silicon Valley - Marietje Schaake
AI Engineering : Building Applications with Foundation Models - Chip Huyen
AI for Business : A Guide to AI Adoption - Jon Whittle

RRP $49.99

$40.75

18%
OFF
Empire of AI : Inside the reckless race for total domination - Karen Hao
Python All-in-One For Dummies : 3rd Edition - John C. Shovic

RRP $74.95

$55.75

26%
OFF