Preface | p. v |

Introduction | p. 1 |

Old Quantum Theory | p. 7 |

Black Body Radiation | p. 7 |

The Photoelectric Effect | p. 14 |

Compton Scattering | p. 16 |

De Broglie's Hypothesis | p. 18 |

Bohr's Model of the Atom | p. 20 |

Problems with Old Quantum Theory | p. 23 |

Exercises | p. 25 |

Quantum Mechanics | p. 27 |

Schrödinger's Equation | p. 28 |

Born's Postulate | p. 30 |

Time-Independent Schrödinger Equation | p. 31 |

Free Particle | p. 33 |

Observables and Operators | p. 33 |

The Superposition Principle | p. 35 |

Expectation Values | p. 36 |

The Uncertainty Principle | p. 37 |

Conceptual Foundations of Quantum Mechanics | p. 37 |

Exercises | p. 41 |

Applications of Quantum Mechanics | p. 43 |

Infinite Square Well | p. 43 |

The Quantum Harmonic Oscillator | p. 46 |

Tunnelling | p. 48 |

Reflection and Transmission Coefficients | p. 51 |

Tunnelling in Action | p. 52 |

Two Level Systems | p. 54 |

Cold Matter | p. 55 |

Exercises | p. 59 |

Schrödinger Equation in Three-Dimensions | p. 63 |

Three-Dimensional Box | p. 63 |

Schrödinger Equation in Spherical Coordinates | p. 64 |

Separation of Variables | p. 68 |

The Hydrogen Atom | p. 69 |

Radial Probability Densities | p. 72 |

Exercises | p. 74 |

Spin and Statistics | p. 77 |

Stern-Gerlach Experiment | p. 77 |

What is Spin? | p. 79 |

Symmetry of the Wave Function | p. 80 |

Wave Function for Two Identical Particles | p. 81 |

The Pauli Exclusion Principle | p. 83 |

Spin States and Spin Functions | p. 84 |

Bose-Einstein and Fermi-Dirac Distributions | p. 85 |

Exercises | p. 90 |

Atoms, Molecules and Lasers | p. 91 |

Periodic Table | p. 91 |

Ionisation Energies | p. 93 |

Energy Spectrum | p. 95 |

Ionic Bonding | p. 95 |

Covalent Bonding | p. 97 |

Van der Waals Force | p. 99 |

Lasers | p. 100 |

The Lasing Condition | p. 102 |

Exercises | p. 105 |

Formal Structure of Quantum Mechanics | p. 107 |

States and Ensembles | p. 107 |

Introduction to Dirac Notation | p. 108 |

Operators | p. 110 |

Measurements | p. 112 |

Postulates of Quantum Mechanics | p. 114 |

Position and Momentum Operators | p. 115 |

Position and Momentum Wave Functions | p. 116 |

Fourier Transforms and the Delta Function | p. 117 |

Position and Momentum Operators Revisited | p. 120 |

The Schrödinger Equation Revisited | p. 122 |

The Uncertainty Principle Revisited | p. 123 |

Pure and Mixed States | p. 124 |

Annihilation and Creation Operators | p. 126 |

The Mach-Zehnder Interferometer | p. 128 |

Perturbation Theory | p. 132 |

Exercises | p. 136 |

Second Revolution: Relativity | p. 139 |

Simultaneity | p. 140 |

Lorentz Transformations | p. 140 |

Length Contraction | p. 144 |

Time Dilation | p. 145 |

The Twin Paradox | p. 147 |

Causality | p. 149 |

E = Mc^{2} | p. 150 |

Relativistic Newton's Laws of Motion | p. 153 |

General Relativity | p. 154 |

Exercises | p. 156 |

Relativistic Quantum Mechanics | p. 159 |

Why the Need for Relativistic Quantum Mechanics? | p. 159 |

The Klein-Gordon Equation | p. 160 |

Negative Probabilities | p. 161 |

The Dirac Equation | p. 161 |

Quantum Field Theory | p. 163 |

Outlook | p. 166 |

Exercises | p. 167 |

Quantum Entanglement | p. 169 |

What is Entanglement? | p. 170 |

Bell's Inequalities | p. 171 |

Quantum Teleportation | p. 174 |

Why is Entanglement Necessary? | p. 177 |

The Non-Increase of Entanglement under Local Operations | p. 178 |

Entanglement Purification | p. 179 |

Purification of Pure States | p. 182 |

Entanglement Measures | p. 183 |

Thermodynamics of Entanglement | p. 186 |

Quantum Computing | p. 188 |

Outlook | p. 190 |

Exercises | p. 192 |

Solutions | p. 193 |

Chapter 2 | p. 193 |

Chapter 3 | p. 196 |

Chapter 4 | p. 198 |

Chapter 5 | p. 203 |

Chapter 6 | p. 205 |

Chapter 7 | p. 207 |

Chapter 8 | p. 210 |

Chapter 9 | p. 215 |

Chapter 10 | p. 217 |

Chapter 11 | p. 220 |

Bibliography | p. 223 |

Index | p. 225 |

Table of Contents provided by Ingram. All Rights Reserved. |