Get Free Shipping on orders over $79
Inside Interesting Integrals : A Collection of Sneaky Tricks, Sly Substitutions, and Numerous Other Stupendously Clever, Awesomely Wicked, and Devilishly Seductive Maneuvers for Computing Hundreds of Perplexing Definite Integrals From Physics, Engineering, and Mathematics (Plus Numerou - Paul J. Nahin

Inside Interesting Integrals

A Collection of Sneaky Tricks, Sly Substitutions, and Numerous Other Stupendously Clever, Awesomely Wicked, and Devilishly Seductive Maneuvers for Computing Hundreds of Perplexing Definite Integrals From Physics, Engineering, and Mathematics (Plus Numerou

By: Paul J. Nahin

Paperback | 28 June 2020 | Edition Number 2

At a Glance

Paperback


RRP $74.99

$70.75

or 4 interest-free payments of $17.69 with

 or 

Ships in 15 to 25 business days

Preface.- 1. Introduction.- 1.1 The Riemann Integral.- 1.2 An Example of Riemann Integration.- 1.3 The Lebesgue Integral.- 1.4 'Interesting' and 'Inside'.- 1.5 An Example of a Trick.- 1.6 Singularities.- 1.7 Dalzell's Integral.- 1.8 Where Integrals Come From.- 1.9 Last Words.- 1.10 Challenge Problems.- 2. 'Easy' Integrals.- 2.1 Six 'Easy' Warm-ups.- 2.2 A New Trick.- 2.3 Two Old Tricks, Plus a New One.- 2.4 Another Old Trick: Euler's Log-Sine Integral.- 2.5 Challenge Problems.- 3. Feynman's Favorite Trick.- 3.1 Leibniz's Formula.- 3.2 Dirichlet's Amazing Integral.- 3.3 Frullani's Integral.- 3.4 The Flip-Side of Feynman's Trick.- 3.5 Combining Two Tricks.- 3.6 Uhler's Integral and Symbolic Integration.- 3.7 The Probability Integral Revisited.- 3.8 Dini's Integral.- 3.9 Feynman's Favorite Trick Solves a Physics Equation .- 3.10 Challenge Problems.- 4. Gamma and Beta Function Integrals.- 4.1 Euler's Gamma Function.- 4.2 Wallis' Integral and the Beta Function.- 4.3 Double Integration Reversal.- 4.4 The Gamma Function Meets Physics.- 4.5 Challenge Problems.- 5. Using Power Series to Evaluate Integrals.- 5.1 Catalan's Constant.- 5.2 Power Series for the Log Function.- 5.3 Zeta Function Integrals.- 5.4 Euler's Constant and Related Integrals.- 5.5 Challenge Problems.- 6. Seven Not-So-Easy Integrals.- 6.1 Bernoulli's Integral .- 6.2 Ahmed's Integral.- 6.3 Coxeter's Integral.- 6.4 The Hardy-Schuster Optical Integral.- 6.5 The Watson/van Peype Triple Integrals.- 6.6 Elliptic Integrals in a Physical Problem.- 6.7 Challenge Problems.- 7. Using √(-1) to Evaluate Integrals.- 7.1 Euler's Formula.- 7.2 The Fresnel Integrals.- 7.3 (3) and More Log-Sine Integrals .- 7.4 (2), At Last!.- 7.5 The Probability Integral Again.- 7.6 Beyond Dirichlet's Integral.- 7.7 Dirichlet Meets the Gamma Function.- 7.8 Fourier Transforms and Energy Integrals.- 7.9 'Weird' Integrals from Radio Engineering.- 7.10 Causality and Hilbert Transform Integrals.- 7.11 Challenge Problems.- 8. Contour Integration.- 8.1 Prelude.- 8.2 Line Integrals.- 8.3 Functions of a Complex Variable.- 8.4 The Cauchy-Riemann Equations and Analytic Functions.- 8.5 Green's Integral Theorem.- 8.6 Cauchy's First Integral Theorem.- 8.7 Cauchy's Second Integral Theorem.- 8.8 Singularities and the Residue Theorem.- 8.9 Integrals with Multi-valued Integrands.- 8.10 Challenge Problems.- 9. Epilogue.- 9.1 Riemann, Prime Numbers, and the Zeta Function.- 9.2 Deriving the Functional Equation for (s).- 9.3 Challenge Questions.- Solutions to the Challenge Problems.

More in Real Analysis

Practical Nonconvex Nonsmooth Optimization - Frank E. Curtis
From Numbers To Analysis : Constructions and Properties - Inder K  Rana
Introduction to Real Analysis - John DePree
Large Scale Optimization : State of the Art - W. W. Hager
Linear Functional Analysis : Series in Real Analysis - Peng Yee Lee

RRP $136.99

$123.75

10%
OFF