Get Free Shipping on orders over $79
Hands-On Q-Learning with Python : Practical Q-learning with OpenAI Gym, Keras, and TensorFlow - Nazia Habib

Hands-On Q-Learning with Python

Practical Q-learning with OpenAI Gym, Keras, and TensorFlow

By: Nazia Habib

eText | 19 August 1905 | Edition Number 1

At a Glance

eText


$45.09

or 4 interest-free payments of $11.27 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Leverage the power of reward-based training for your deep learning models with Python

Key Features

  • Understand Q-learning algorithms to train neural networks using Markov Decision Process (MDP)
  • Study practical deep reinforcement learning using Q-Networks
  • Explore state-based unsupervised learning for machine learning models

Book Description

Q-learning is a machine learning algorithm used to solve optimization problems in artificial intelligence (AI). It is one of the most popular fields of study among AI researchers.

This book starts off by introducing you to reinforcement learning and Q-learning, in addition to helping you get familiar with OpenAI Gym as well as libraries such as Keras and TensorFlow. A few chapters into the book, you will gain insights into modelfree Q-learning and use deep Q-networks and double deep Q-networks to solve complex problems. This book will guide you in exploring use cases such as self-driving vehicles and OpenAI Gym's CartPole problem. You will also learn how to tune and optimize Q-networks and their hyperparameters. As you progress, you will understand the reinforcement learning approach to solving real-world problems. You will also explore how to use Q-learning and related algorithms in real-world applications such as scientific research. Toward the end, you'll gain a sense of what's in store for reinforcement learning.

By the end of this book, you will be equipped with the skills you need to solve reinforcement learning problems using Q-learning algorithms with OpenAI Gym, Keras, and TensorFlow.

What you will learn

  • Explore the fundamentals of reinforcement learning and the state-action-reward process
  • Understand Markov decision processes
  • Get well versed with libraries such as Keras, and TensorFlow
  • Create and deploy model-free learning and deep Q-learning agents with TensorFlow, Keras, and OpenAI Gym
  • Choose and optimize a Q-Network's learning parameters and fine-tune its performance
  • Discover real-world applications and use cases of Q-learning

Who this book is for

If you are a machine learning developer, engineer, or professional who wants to delve into the deep learning approach for a complex environment, then this is the book for you. Proficiency in Python programming and basic understanding of decision-making in reinforcement learning is assumed.

on
Desktop
Tablet
Mobile

More in Computer Science

Amazon.com : Get Big Fast - Robert Spector

eBOOK

ReFormat : Windows 11 - Adam Natad

eBOOK