Foreword by Lotfi A ZadehPreface by Piero Bonissone, Enrique H Ruspini, and Witold PedryczPART A: INTRODUCTIONA1. George J. Klir and Bo Yuan: BackgroundA2. Enrique H. Ruspini and E.H. Mamdani: Why Fuzzy LogicPART B: FUNDAMENTAL CONCEPTS OF FUZZY COMPUTATIONB1. Vagueness and UncertaintyB1.1. Llorenc Valverde and Enrique Trillas: Theories of vaguenessB1.2. Phillipe Smets: Theories of uncertaintyB2. Fuzzy Sets: Concepts and CharacterizationsB2.1. Enrique H. Ruspini: IntroductionB2.2. George J. Klir and Bo Yuan: Operations on fuzzy setsB2.3. Enrique H. Ruspini and Francesc Esteva: Interpretations of fuzzy setsB2.4. Sergei Ovchinnikov: Fuzzy relationsB2.5. Ronald R. Yager: Characterization of fuzzy set propertiesB2.6. Michel Grabisch: Fuzzy measure and integralB2.7. Arthur Ramer: Fuzzy mathematical objectsB2.8. Extension principle:Bernadette Bouchon-MeunierB3. Fuzzy Set CalculusB3.1. Enrique H. Ruspini, Piero Bonissone, and Witold Pedrycz: IntroductionB3.2. Membership function elicitationB3.3. Witold Pedrycz: Fuzzy relational calculusB3.4. Miguel Delgado and M.A. Vila: Fuzzy arithmeticB4. Didier Dubois and Henri Prade: Possibility TheoryB5. Fuzzy ReasoningB5.1. Enrique H. Ruspini, Piero Bonissone, Witold Pedrycz, and Antony Satyadas:IntroductionB5.2. Llorenc Valverde and Enrique Trillas: Fuzzy inferenceB6. Masaharu Mizumoto: DefuzzificationPART C: FUZZY MODELSC1. Enrique H. Ruspini, Piero Bonissone, and Witold Pedrycz: Fuzzy ModelsC2. Modeling and SimulationC2.1. John Yen and Liang Wang: Granule-based modelsC2.2. Francesc Esteva and Llorenc Valverde: Logical aspects of fuzzy modelsC2.3. Maria Angeles Gil, Norberto Corral, Maria Teresa Lopez, and Antonia Salas:Statistical modelsC2.4. Zeungnam Bien and Myung-Geun Chun: Fuzzy petri net modelC2.5. Piero Bonissone and Pratap S. Khedkar: Model acquisition methodologiesC2.6. James J. Buckley: Approximation aspects of fuzzy modelsPART D: HYBRID APPROACHESD1. Enrique H. Ruspini, Piero Bonissone, and Witold Pedrycz: Introduction:Motivation for Hybrid ApproachesD2. Hamid R. Berenji and Pratap S. Khedkar: Neuro-Fuzzy SystemsD3. Hugues Bersini: Fuzzy-Evolutionary SystemsPART E: FUZZY COMPUTATION ENVIRONMENTSE1. Software ApproachesE1.1. Motohide Umano and Masao Mukaidono: Programming languagesE1.2. J.F. Baldwin and John Yen: Knowledge-based systemsE1.3. Frederick E. Petry: Database management, information retrieval, anddecision support systemsE2. Hardware ApproachesE2.1. Yashvant Jani: Desirable featuresE2.2. Adapting existing hardware to fuzzy computationE2.3. Takeshi Yamakawa: Analog approachesE2.4. Rinaldo Poluzzi: Digital approachesE2.5. Rinaldo Poluzzi: Hybrid (digital-analog) approachesPART F: APPLICATIONS OF FUZZY COMPUTATIONF1. Knowledge Based SystemsF1.1. J.F. Baldwin and John Yen: Knowledge representationF1.2. John Yen: Inference methodsF1.3. Ramon Lopez de Mantaras and Carles Sierra: Control methodsF1.4. Piero Bonissone and Abraham Kandel: Design methodsF2. ControlF2.1. Rainer Palm: Principles of fuzzy controllersF2.2. Fuzzy control approachesF2.2.1. Rainer Palm, Dimiter Driankov, Toshiro Terano, and Kaoru Hirota: Generaldesign schemesF2.2.2. Sujeet Shenoi: Cell mapsF2.2.3. Rainer Palm: Sliding mode controlF2.2.4. J Valente de Oliveira: Predictive controlF2.2.5. Kaoru Hirota: Hierarchical controlF2.2.6. Dimiter Driankov: Model-based controlF2.2.7. Rainer Palm: Optimal fuzzy controlF3. Machine LearningF3.1. Attilio Giordana and Lorenza Saitta: Introduction: learning fuzzy conceptsF3.2. Attilio Giordana and L. Saitta: Supervised learningF3.3. Hamid R. Berenji and Pratap S. Khedkar: Reinforcement learningF4. Data and Information ManagementF4.1. Patrick Bosc and Olivier Pivert: Fuzzy databasesF4.2. Sadaaki Miyamoto: Information retrievalF4.3. Piero Bonissone and Ramon Lopez de Mantaras: Case-based reasoningF5. Decision Making and OptimizationF5.1. Marc R. Roubens, Janos Fodor, and P. Perny: Decision-making modelsF5.2. Janusz Kacprzyk and Ronald R. Yager: OptimizationF6. James C. Bezdek: P
Industry Reviews
"This handbook is the most comprehensive source for the theories, technologies, and applications of fuzzy logic. It can also serve the needs of a wide range of readers, from researchers and students in academia to practitioners in industry." John Yen, Texas A&M University andbook is the most comprehensive source for the theories, technologies, and applications of fuzzy logic. It can also serve the needs of a wide range of readers, from researchers and students in academia to practitioners in industry." John Yen, Texas A&M University