Get Free Shipping on orders over $79
Graphics Processing Unit-Based High Performance Computing in Radiation Therapy : Series in Medical Physics and Biomedical Engineering - Xun Jia

Graphics Processing Unit-Based High Performance Computing in Radiation Therapy

By: Xun Jia (Editor), Steve B. Jiang (Editor)

Hardcover | 7 October 2015 | Edition Number 1

At a Glance

Hardcover


RRP $378.00

$324.75

14%OFF

or 4 interest-free payments of $81.19 with

 or 

Available for Backorder. We will order this from our supplier however there isn't a current ETA.

Use the GPU Successfully in Your Radiotherapy Practice

With its high processing power, cost-effectiveness, and easy deployment, access, and maintenance, the graphics processing unit (GPU) has increasingly been used to tackle problems in the medical physics field, ranging from computed tomography reconstruction to Monte Carlo radiation transport simulation. Graphics Processing Unit-Based High Performance Computing in Radiation Therapy collects state-of-the-art research on GPU computing and its applications to medical physics problems in radiation therapy.

Tackle Problems in Medical Imaging and Radiotherapy

The book first offers an introduction to the GPU technology and its current applications in radiotherapy. Most of the remaining chapters discuss a specific application of a GPU in a key radiotherapy problem. These chapters summarize advances and present technical details and insightful discussions on the use of GPU in addressing the problems. The book also examines two real systems developed with GPU as a core component to accomplish important clinical tasks in modern radiotherapy.

Translate Research Developments to Clinical Practice

Written by a team of international experts in radiation oncology, biomedical imaging, computing, and physics, this book gets clinical and research physicists, graduate students, and other scientists up to date on the latest in GPU computing for radiotherapy. It encourages you to bring this novel technology to routine clinical radiotherapy practice.

Industry Reviews

"The use of graphics processing units (GPU) is of significant interest to the medical physics community, due to its potential for dramatic advances in parallel computing. This is driven by the relatively low costs, high processing power and the ease of installing these cards in the clinic...This book brings together various research groups to review the state-of-the-art for GPUs in radiotherapy. The book initially starts with an overview of the current state of GPU technology, demonstrating the increase in performance over recent years and how the GPU is controlled by the CPU. It then systematically approaches various uses for the GPUs, from increasing the speed of filtered back projection reconstruction for CBCT to dose calculation via Monte Carlo or collapsed cone superposition methods. The book concludes with a look at more quality assurance uses, such as a chapter dedicated to GPU enhanced calculations of the gamma index.
The editors achieve their aim of illustrating the vast utility for the GPUs. Each chapter of the book provides useful and generally easy to understand summaries of the main algorithms used in radiotherapy, such as the CBCT reconstruction algorithm, deformable registration algorithms and Monte Carlo methods. In all cases the authors demonstrate potential performance improvement, which in many cases leads one to wonder why these technologies aren't already in use...Overall this a good book, which effectively demonstrates the uses and the associated performance benefits of using the GPU for radiotherapy, something that will no doubt become more important as we move into the era of adaptive radiotherapy where fast reconstruction, deformable registration and dose calculations will be essential."
-Dr David Nash, Queen Alexandra Hospital, in RAD Magazine, October 2016

"Graphics Processing Unit-Based High Performance Computing in Radiation Therapy provides comprehensive and timely information on state-of-the-art GPU techniques and is certainly a must-have book for medical physicists, engineers, and students engaged in research and development involving high performance computing."
-Lei Xing, Jacob Haimson Professor of Medical Physics, Stanford University

"With adaptive radiation therapy and personalized treatments becoming more and more important in radiation therapy, improving computational efficiency is highly significant. This excellent book covers high-performance computing in a comprehensive manner. All aspects of cutting-edge computing in radiation therapy are discussed, namely, diagnostic imaging for treatment planning, on-line imaging, treatment plan optimization, as well as dose calculation for treatment planning. This book is a rich source of information for medical physicists interested in translational research aiming at improving clinical workflow and accuracy. At the same time, it is an excellent textbook for students in the field. Highly recommended!"
-Harald Paganetti, PhD, FAAPM, Professor and Director of Physics Research, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School

More in Medical Physics

Imaging for Students - Craig  Hacking

RRP $79.99

$70.75

12%
OFF
Intracranial Stereotactic Radiosurgery - Ajay Niranjan

RRP $315.00

$271.99

14%
OFF
Comprehensive Brachytherapy : Physical and Clinical Aspects - Ali S.  Meigooni
Atlas of Dental Radiography in Dogs and Cats - Gregg DuPont

RRP $197.95

$170.75

14%
OFF
Practical Radiotherapy Planning : Fifth Edition - Shahreen Ahmad

RRP $114.00

$94.99

17%
OFF
Basic Clinical Radiobiology - Albert  van der KogeJ. l
Head and Neck Imaging : Direct Diagnosis in Radiology - Benjamin Fritz
The Chest X-Ray : Differential Diagnosis in Conventional Radiology - Francis A. Burgener
Problems and Solutions in Medical Physics : Nuclear Medicine Physics - Kwan Hoong Ng
External Beam Therapy : 3rd edition - Peter Hoskin

RRP $123.95

$70.75

43%
OFF
Magnetic Resonance Imaging Handbook, Four-Volume Set - Luca Saba

RRP $1,512.00

$1,266.99

16%
OFF