Get Free Shipping on orders over $79
Exploratory Data Analysis Using R : Chapman & Hall/CRC Data Mining and Knowledge Discovery Series - Ronald K. Pearson

Exploratory Data Analysis Using R

By: Ronald K. Pearson

eText | 4 May 2018 | Edition Number 1

At a Glance

eText


$107.79

or 4 interest-free payments of $26.95 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Exploratory Data Analysis Using R provides a classroom-tested introduction to exploratory data analysis (EDA) and introduces the range of "interesting" - good, bad, and ugly - features that can be found in data, and why it is important to find them. It also introduces the mechanics of using R to explore and explain data.

The book begins with a detailed overview of data, exploratory analysis, and R, as well as graphics in R. It then explores working with external data, linear regression models, and crafting data stories. The second part of the book focuses on developing R programs, including good programming practices and examples, working with text data, and general predictive models. The book ends with a chapter on "keeping it all together" that includes managing the R installation, managing files, documenting, and an introduction to reproducible computing.

The book is designed for both advanced undergraduate, entry-level graduate students, and working professionals with little to no prior exposure to data analysis, modeling, statistics, or programming. it keeps the treatment relatively non-mathematical, even though data analysis is an inherently mathematical subject. Exercises are included at the end of most chapters, and an instructor's solution manual is available.

About the Author:

Ronald K. Pearson holds the position of Senior Data Scientist with GeoVera, a property insurance company in Fairfield, California, and he has previously held similar positions in a variety of application areas, including software development, drug safety data analysis, and the analysis of industrial process data. He holds a PhD in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology and has published conference and journal papers on topics ranging from nonlinear dynamic model structure selection to the problems of disguised missing data in predictive modeling. Dr. Pearson has authored or co-authored books including Exploring Data in Engineering, the Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital Filtering with Python. He is also the developer of the DataCamp course on base R graphics and is an author of the datarobot and GoodmanKruskal R packages available from CRAN (the Comprehensive R Archive Network).

on
Desktop
Tablet
Mobile

Other Editions and Formats

Paperback

Published: 30th June 2020

Available for Backorder. We will order this from our supplier however there isn't a current ETA.

Multi-Item Pack

Published: 4th September 2018

More in Economic Statistics

Risk to Riches - Eugene Daniels

eBOOK

$23.99

The Silent Signal - MILES TRIDENT

eBOOK

The Comeback Kings - Michael Smith

eBOOK

Bayesian A/B Decision Models - J Christopher Westland

eBOOK

RRP $132.18

$119.99