Get Free Shipping on orders over $79
Data Mining in Finance : Advances in Relational and Hybrid Methods - Boris Kovalerchuk

Data Mining in Finance

Advances in Relational and Hybrid Methods

By: Boris Kovalerchuk, Evgenii Vityaev

Paperback | 20 March 2013

At a Glance

Paperback


$329.75

or 4 interest-free payments of $82.44 with

 or 

Ships in 5 to 7 business days

Data Mining in Finance presents a comprehensive overview of major algorithmic approaches to predictive data mining, including statistical, neural networks, ruled-based, decision-tree, and fuzzy-logic methods, and then examines the suitability of these approaches to financial data mining. The book focuses specifically on relational data mining (RDM), which is a learning method able to learn more expressive rules than other symbolic approaches. RDM is thus better suited for financial mining, because it is able to make greater use of underlying domain knowledge. Relational data mining also has a better ability to explain the discovered rules - an ability critical for avoiding spurious patterns which inevitably arise when the number of variables examined is very large. The earlier algorithms for relational data mining, also known as inductive logic programming (ILP), suffer from a relative computational inefficiency and have rather limited tools for processing numerical data.
Data Mining in Finance introduces a new approach, combining relational data mining with the analysis of statistical significance of discovered rules. This reduces the search space and speeds up the algorithms. The book also presents interactive and fuzzy-logic tools for `mining' the knowledge from the experts, further reducing the search space.
Data Mining in Finance contains a number of practical examples of forecasting S&P 500, exchange rates, stock directions, and rating stocks for portfolio, allowing interested readers to start building their own models. This book is an excellent reference for researchers and professionals in the fields of artificial intelligence, machine learning, data mining, knowledge discovery, and applied mathematics.

More in Computer Science

Microsoft 365 Excel All-in-One For Dummies : Excel for Dummies - David H. Ringstrom
Microsoft 365 Excel For Dummies : For Dummies (Computer/Tech) - David H. Ringstrom
Creative Machines : AI, Art & Us - Maya Ackerman

RRP $57.95

$44.75

23%
OFF
Genesis : Artificial Intelligence, Hope, and the Human Spirit - Eric Schmidt
The Tech Coup : How to Save Democracy from Silicon Valley - Marietje Schaake
New Beginnings : why change is so difficult and how to achieve it - Stefan Klein
The Shortest History of AI - Toby Walsh

RRP $27.99

$22.75

19%
OFF
Artificial Intelligence : A Modern Approach, 4th Global Edition - Peter Norvig
Life 3.0 : Being Human in the Age of Artificial Intelligence - Max Tegmark
Python All-in-One For Dummies : 3rd Edition - Alan Simpson

RRP $74.95

$55.75

26%
OFF
Falter : Has the Human Game Begun to Play Itself Out? - Bill McKibben