
Complex Analysis
A Modern First Course in Function Theory
eText | 26 May 2015 | Edition Number 1
At a Glance
ePUB
eText
$150.69
or 4 interest-free payments of $37.67 with
orInstant online reading in your Booktopia eTextbook Library *
Why choose an eTextbook?
Instant Access *
Purchase and read your book immediately
Read Aloud
Listen and follow along as Bookshelf reads to you
Study Tools
Built-in study tools like highlights and more
* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject
Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental principles of complex analysis. After laying groundwork on complex numbers and the calculus and geometric mapping properties of functions of a complex variable, the author uses power series as a unifying theme to define and study the many rich and occasionally surprising properties of analytic functions, including the Cauchy theory and residue theorem. The book concludes with a treatment of harmonic functions and an epilogue on the Riemann mapping theorem.
Thoroughly classroom tested at multiple universities, Complex Analysis: A Modern First Course in Function Theory features:
- Plentiful exercises, both computational and theoretical, of varying levels of difficulty, including several that could be used for student projects
- Numerous figures to illustrate geometric concepts and constructions used in proofs
- Remarks at the conclusion of each section that place the main concepts in context, compare and contrast results with the calculus of real functions, and provide historical notes
- Appendices on the basics of sets and functions and a handful of useful results from advanced calculus
Industry Reviews
on
Preface ix
1 The Complex Numbers 1
1.1 Why? 1
1.2 The Algebra of Complex Numbers 3
1.3 The Geometry of the Complex Plane 7
1.4 The Topology of the Complex Plane 9
1.5 The Extended Complex Plane 16
1.6 Complex Sequences 18
1.7 Complex Series 24
2 Complex Functions and Mappings 29
2.1 Continuous Functions 29
2.2 Uniform Convergence 34
2.3 Power Series 38
2.4 Elementary Functions and Euler's Formula 43
2.5 Continuous Functions as Mappings 50
2.6 Linear Fractional Transformations 53
2.7 Derivatives 64
2.8 The Calculus of Real Variable Functions 70
2.9 Contour Integrals 75
3 Analytic Functions 87
3.1 The Principle of Analyticity 87
3.2 Differentiable Functions are Analytic 89
3.3 Consequences of Goursat's Theorem 100
3.4 The Zeros of Analytic Functions 104
3.5 The Open Mapping Theorem and Maximum Principle 108
3.6 The Cauchy-Riemann Equations 113
3.7 Conformal Mapping and Local Univalence 117
4 Cauchy's Integral Theory 127
4.1 The Index of a Closed Contour 127
4.2 The Cauchy Integral Formula 133
4.3 Cauchy's Theorem 139
5 The Residue Theorem 145
5.1 Laurent Series 145
5.2 Classification of Singularities 152
5.3 Residues 158
5.4 Evaluation of Real Integrals 165
5.5 The Laplace Transform 174
6 Harmonic Functions and Fourier Series 183
6.1 Harmonic Functions 183
6.2 The Poisson Integral Formula 191
6.3 Further Connections to Analytic Functions 201
6.4 Fourier Series 210
Epilogue 227
A Sets and Functions 239
B Topics from Advanced Calculus 247
References 255
Index 257
ISBN: 9781118705278
ISBN-10: 1118705270
Published: 26th May 2015
Format: ePUB
Language: English
Audience: Professional and Scholarly
Publisher: Wiley Global Research (STMS)
Country of Publication: US
Edition Number: 1
























