Get Free Shipping on orders over $79
Bayesian Statistics for the Social Sciences - David Kaplan

Bayesian Statistics for the Social Sciences

By: David Kaplan

eText | 2 October 2023 | Edition Number 2

At a Glance

eText


$179.75

or 4 interest-free payments of $44.94 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
The second edition of this practical book equips social science researchers to apply the latest Bayesian methodologies to their data analysis problems. It includes new chapters on model uncertainty, Bayesian variable selection and sparsity, and Bayesian workflow for statistical modeling. Clearly explaining frequentist and epistemic probability and prior distributions, the second edition emphasizes use of the open-source RStan software package. The text covers Hamiltonian Monte Carlo, Bayesian linear regression and generalized linear models, model evaluation and comparison, multilevel modeling, models for continuous and categorical latent variables, missing data, and more. Concepts are fully illustrated with worked-through examples from large-scale educational and social science databases, such as the Program for International Student Assessment and the Early Childhood Longitudinal Study. Annotated RStan code appears in screened boxes; the companion website (www.guilford.com/kaplan-materials) provides data sets and code for the book's examples.   New to This Edition *Utilizes the R interface to Stan--faster and more stable than previously available Bayesian software--for most of the applications discussed. *Coverage of Hamiltonian MC; Cromwell's rule; Jeffreys' prior; the LKJ prior for correlation matrices; model evaluation and model comparison, with a critique of the Bayesian information criterion; variational Bayes as an alternative to Markov chain Monte Carlo (MCMC) sampling; and other new topics. *Chapters on Bayesian variable selection and sparsity, model uncertainty and model averaging, and Bayesian workflow for statistical modeling.  
on
Desktop
Tablet
Mobile

More in Economic Statistics

The Comeback Kings - Michael Smith

eBOOK

Risk to Riches - Eugene Daniels

eBOOK

$23.99

The Silent Signal - MILES TRIDENT

eBOOK