| List of contributors | p. viii |
| An invitation to Bayesian nonparametrics | p. 1 |
| Bayesian nonparametric methods: motivation and ideas | p. 22 |
| Introduction | p. 22 |
| Bayesian choices | p. 24 |
| Decision theory | p. 26 |
| Asymptotics | p. 27 |
| General posterior inference | p. 29 |
| Discussion | p. 33 |
| References | p. 33 |
| The Dirichlet process, related priors and posterior asymptotics | p. 35 |
| Introduction | p. 35 |
| The Dirichlet process | p. 36 |
| Priors related to the Dirichlet process | p. 46 |
| Posterior consistency | p. 49 |
| Convergence rates of posterior distributions | p. 60 |
| Adaptation and model selection | p. 67 |
| Bernshtein-von Mises theorems | p. 71 |
| Concluding remarks | p. 74 |
| References | p. 76 |
| Models beyond the Dirichlet process | p. 80 |
| Introduction | p. 80 |
| Models for survival analysis | p. 86 |
| General classes of discrete nonparametric priors | p. 99 |
| Models for density estimation | p. 114 |
| Random means | p. 126 |
| Concluding remarks | p. 129 |
| References | p. 130 |
| Further models and applications | p. 137 |
| Beta processes for survival and event history models | p. 137 |
| Quantile inference | p. 144 |
| Shape analysis | p. 148 |
| Time series with nonparametric correlation function | p. 150 |
| Concluding remarks | p. 152 |
| References | p. 155 |
| Hierarchical Bayesian nonparametric models with applications | p. 158 |
| Introduction | p. 158 |
| Hierarchical Dirichlet processes | p. 160 |
| Hidden Markov models with infinite state spaces | p. 171 |
| Hierarchical Pitman-Yor processes | p. 177 |
| The beta process and the Indian buffet process | p. 184 |
| Semiparametric models | p. 193 |
| Inference for hierarchical Bayesian nonparametric models | p. 195 |
| Discussion | p. 202 |
| References | p. 203 |
| Computational issues arising in Bayesian nonparametric hierarchical models | p. 208 |
| Introduction | p. 208 |
| Construction of finite-dimensional measures on observables | p. 209 |
| Recent advances in computation for Dirichlet process mixture models | p. 211 |
| References | p. 221 |
| Nonparametric Bayes applications to biostatistics | p. 223 |
| Introduction | p. 223 |
| Hierarchical modeling with Dirichlet process priors | p. 224 |
| Nonparametric Bayes functional data analysis | p. 236 |
| Local borrowing of information and clustering | p. 245 |
| Borrowing information across studies and centers | p. 248 |
| Flexible modeling of conditional distributions | p. 250 |
| Bioinformatics | p. 260 |
| Nonparametric hypothesis testing | p. 265 |
| Discussion | p. 267 |
| References | p. 268 |
| More nonparametric Bayesian models for biostatistics | p. 274 |
| Introduction | p. 274 |
| Random partitions | p. 275 |
| Pólya trees | p. 277 |
| More DDP models | p. 279 |
| Other data formats | p. 283 |
| An R package for nonparametric Bayesian inference | p. 286 |
| Discussion | p. 289 |
| References | p. 290 |
| Author index | p. 292 |
| Subject index | p. 297 |
| Table of Contents provided by Ingram. All Rights Reserved. |