Get Free Shipping on orders over $79
Applied Quantum Cryptanalysis - Alexei Petrenko

Applied Quantum Cryptanalysis

By: Alexei Petrenko

eText | 13 April 2023 | Edition Number 1

At a Glance

eText


$224.40

or 4 interest-free payments of $56.10 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

Today we witness an explosive growth in attention to Q-computing. Q-computing technologies, along with artificial intelligence (AI) and machine learning (ML) technologies, cloud and foggy computing, as well as technologies for collecting and streaming processing of Big Data and ETL, are constantly leading the lists of "e;"e;end-to-end"e;"e; information technologies for the digital economy of technologically developed countries of the world. One of the main reasons for this is the potential ability of quantum computers to solve some computational problems more efficiently than any of the most modern classical computers of the von Neumann architecture (supercomputers). The most expressive and interesting, from an applied point of view, examples of such problems are integer factorization, effectively performed by Shor's quantum algorithm, as well as record search in an unordered database, effectively solved by Grover's algorithm.This monograph contains the best practice for solving problems of quantum cryptanalysis to improve cyber security and resilience of the digital economy. The book discusses well-known and author's software implementations of promising quantum Shor algorithms, Grover, Simon et al.Shor's algorithm provides exponential acceleration of solving factorization problems, discrete logarithm problems (DLPs) and elliptic curve discrete logarithm problems (ECDLPs). The mentioned tasks are widely used in TLS, SSH or IPsec cryptographic applications of Internet/Intranet and IIoT/IoT networks, communication protocols based on Diffie-Hellman key agreements (dependent on the strength of the DLP or ECDLP), digital signature algorithms (DSA, ECDSA, RSA-PSS), public key encryption algorithms (El Gamal, RSA-OAEP), etc. In other words, Shor's quantum algorithm is potentially capable of violating these algorithms, and with them all the mechanisms of public-key cryptography deployed in cyberspace.

on
Desktop
Tablet
Mobile

More in Computer Security