Get Free Shipping on orders over $79
Applied Machine Learning and High-Performance Computing on AWS : Accelerate the development of machine learning applications following architectural best practices - Mani Khanuja

Applied Machine Learning and High-Performance Computing on AWS

Accelerate the development of machine learning applications following architectural best practices

By: Mani Khanuja, Farooq Sabir, Shreyas Subramanian, Trenton Potgieter

eBook | 30 December 2022

At a Glance

eBook


RRP $60.80

$54.99

10%OFF

or 4 interest-free payments of $13.75 with

 or 

Instant Digital Delivery to your Kobo Reader App

Build, train, and deploy large machine learning models at scale in various domains such as computational fluid dynamics, genomics, autonomous vehicles, and numerical optimization using Amazon SageMaker.

Key Features

  • Understanding the need for High Performance Computing (HPC).
  • Build, train, and deploy large ML models with billions of parameters using Amazon SageMaker.
  • Best practices and architectures for implementing ML at scale using HPC.

Book Description

Machine Learning (ML) and High Performance Computing (HPC) on AWS run compute intensive workloads across industries and emerging applications. It's use cases can be linked to various verticals like computational fluid dynamics (CFD), genomics, and autonomous vehicles.

The book provides end-to-end guidance starting from HPC concepts for storage and networking. It then goes deeper into part 2, with working examples on how to process large datasets using SageMaker Studio and EMR, build, train, and deploy large models using distributed training. It also covers deploying models to edge devices using SageMaker and IoT Greengrass, and performance optimization of ML models, for low latency use cases.

By the end of this book, you will be able to build, train, and deploy your own large scale ML application, using HPC on AWS, following the industry best practices and addressing the key pain points encountered in the application life cycle.

What you will learn

  • Data management, storage, and fast networking for HPC applications
  • Analysis and visualization of a large volume of data using Spark
  • Train visual transformer model using SageMaker distributed training
  • Deploy and manage ML models at scale on cloud and at edge
  • Performance optimization of ML models for low latency workloads
  • Apply HPC to industry domains like CFD, genomics, AV, and optimization

Who This Book Is For

The book begins with HPC concepts, however, expects you to have prior machine learning knowledge. This book is for ML engineers and Data Scientists, interested in learning advanced topics on using large dataset for training large models using distributed training concepts on AWS, followed by deploying models at scale and performance optimization for low latency use cases. This book is also beneficial for Practitioners in fields such as numerical optimization, computation fluid dynamics, autonomous vehicles, and genomics, who require HPC for applying ML models to applications at scale.

Table of Contents

  1. High Performance Computing Fundamentals
  2. Data Management and Transfer
  3. Compute and Networking
  4. Data Storage
  5. Data Analysis
  6. Distributed Training of Machine Learning Models
  7. Deploying Machine Learning Models at Scale
  8. Optimizing and Managing Machine Learning Models for Edge Deployment
  9. Performance Optimization for Real-time Inference on Cloud
  10. Visualization
  11. Computational Fluid Dynamics
  12. Genomics
  13. Autonomous Vehicles
  14. Numerical Optimization
on

More in Computer Science

Amazon.com : Get Big Fast - Robert Spector

eBOOK

AI-Powered Search - Trey Grainger

eBOOK

Tissue Proteomics : Methods and Protocols - Taufika Islam Williams

eBOOK

RRP $369.00

$332.99

10%
OFF
ReFormat : Windows 11 - Adam Natad

eBOOK