Get Free Shipping on orders over $79
An Introduction to Statistical Learning : with Applications in R - Daniela Witten
eTextbook alternate format product

Instant online reading.
Don't wait for delivery!

An Introduction to Statistical Learning

with Applications in R

By: Daniela Witten, Trevor Hastie, Robert Tibshirani, Gareth James

Paperback | 30 July 2022 | Edition Number 2

At a Glance

Paperback


$99.00

or 4 interest-free payments of $24.75 with

 or 

Ships in 5 to 7 business days

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naive Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.

More in Probability & Statistics

Speed : How it Explains the World - Vaclav Smil

RRP $36.99

$29.75

20%
OFF
The Maths Book : Big Ideas Simply Explained - DK

RRP $42.99

$32.99

23%
OFF
The Art of Statistics : Learning from Data - David Spiegelhalter

RRP $26.99

$22.99

15%
OFF
Sampling Theory and Practice - Casey Murphy
Practical Statistics - Nancy Maxwell

$470.75

Foundations of Statistics - Everett Davies
Rationality : What It Is, Why It Seems Scarce, Why It Matters - Steven Pinker
Psychology Statistics For Dummies : For Dummies - Donncha Hanna

RRP $49.95

$38.75

22%
OFF
Introduction to Medical Statistics : 4th edition - Martin Bland

RRP $70.95

$62.75

12%
OFF
On the Edge : The Art of Risking Everything - Nate Silver

RRP $36.99

$29.75

20%
OFF
Naked Statistics : Stripping the Dread from the Data - Charles Wheelan
Statistics without Tears : An Introduction for Non-Mathematicians - Derek Rowntree
Calling Bullshit : The Art of Scepticism in a Data-Driven World - Carl T. Bergstrom