Get Free Shipping on orders over $79
Wavelet Transforms and Their Applications - Lokenath Debnath

Wavelet Transforms and Their Applications

By: Lokenath Debnath

eText | 28 June 2011

At a Glance

eText


$139.00

or 4 interest-free payments of $34.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
Overview Historically, the concept of "ondelettes" or "wavelets" originated from the study of time-frequency signal analysis, wave propagation, and sampling theory. One of the main reasons for the discovery of wavelets and wavelet transforms is that the Fourier transform analysis does not contain the local information of signals. So the Fourier transform cannot be used for analyzing signals in a joint time and frequency domain. In 1982, Jean MorIet, in collaboration with a group of French engineers, first introduced the idea of wavelets as a family of functions constructed by using translation and dilation of a single function, called the mother wavelet, for the analysis of nonstationary signals. However, this new concept can be viewed as the synthesis of various ideas originating from different disciplines including mathematics (Calder6n-Zygmund operators and Littlewood-Paley theory), physics (coherent states in quantum mechanics and the renormalization group), and engineering (quadratic mirror filters, sideband coding in signal processing, and pyramidal algorithms in image processing). Wavelet analysis is an exciting new method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, image processing, pattern recognition, computer graphics, the detection of aircraft and submarines, and improvement in CAT scans and other medical image technology. Wavelets allow complex information such as music, speech, images, and patterns to be decomposed into elementary forms, called the fundamental building blocks, at different positions and scales and subsequently reconstructed with high precision.
on
Desktop
Tablet
Mobile

More in Electrical Engineering

Artificial Photosynthesis : RSC Foundations : Book 1 - Shunichi Fukuzumi

eBOOK