Get Free Shipping on orders over $79
Value Distribution in p-adic Analysis - Alain Escassut

Value Distribution in p-adic Analysis

By: Alain Escassut

eText | 27 November 2015

At a Glance

eText


$115.50

or 4 interest-free payments of $28.88 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

The book first explains the main properties of analytic functions in order to use them in the study of various problems in p-adic value distribution. Certain properties of p-adic transcendental numbers are examined such as order and type of transcendence, with problems on p-adic exponentials. Lazard's problem for analytic functions inside a disk is explained. P-adic meromorphics are studied. Sets of range uniqueness in a p-adic field are examined. The ultrametric Corona problem is studied. Injective analytic elements are characterized. The p-adic Nevanlinna theory is described and many applications are given: p-adic Hayman conjecture, Picard's values for derivatives, small functions, branched values, growth of entire functions, problems of uniqueness, URSCM and URSIM, functions of uniqueness, sharing value problems, Nevanlinna theory in characteristic p>0, p-adic Yosida's equation.

The book first explains the main properties of analytic functions in order to use them in the study of various problems in p-adic value distribution. Certain properties of p-adic transcendental numbers are examined such as order and type of transcendence, with problems on p-adic exponentials. Lazard's problem for analytic functions inside a disk is explained. P-adic meromorphics are studied. Sets of range uniqueness in a p-adic field are examined. The ultrametric Corona problem is studied. Injective analytic elements are characterized. The p-adic Nevanlinna theory is described and many applications are given: p-adic Hayman conjecture, Picard's values for derivatives, small functions, branched values, growth of entire functions, problems of uniqueness, URSCM and URSIM, functions of uniqueness, sharing value problems, Nevanlinna theory in characteristic p>0, p-adic Yosida's equation.

Readership: Graduate students and researchers interested in p-adic analysis.
on
Desktop
Tablet
Mobile

More in Calculus & Mathematical Analysis

AI Breaking Boundaries - Avinash Vanam

eBOOK

The Monodromy Group - Henryk ?o??dek

eTEXT

Enriques Surfaces I - François Cossec

eTEXT