Get Free Shipping on orders over $79
User-Defined Tensor Data Analysis : Computer Science (R0) - Bin Dong

User-Defined Tensor Data Analysis

By: Bin Dong, Kesheng Wu, Suren Byna

eText | 29 September 2021

At a Glance

eText


$89.00

or 4 interest-free payments of $22.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

The SpringerBrief introduces FasTensor, a powerful parallel data programming model developed for big data applications. This book also provides a user's guide for installing and using FasTensor. FasTensor enables users to easily express many data analysis operations, which may come from neural networks, scientific computing, or queries from traditional database management systems (DBMS). FasTensor frees users from all underlying and tedious data management tasks, such as data partitioning, communication, and parallel execution.

This SpringerBrief gives a high-level overview of the state-of-the-art in parallel data programming model and a motivation for the design of FasTensor. It illustrates the FasTensor application programming interface (API) with an abundance of examples and two real use cases from cutting edge scientific applications. FasTensor can achieve multiple orders of magnitude speedup over Spark and other peer systems in executing big data analysis operations. FasTensor makes programming for data analysis operations at large scale on supercomputers as productively and efficiently as possible. A complete reference of FasTensor includes its theoretical foundations, C++ implementation, and usage in applications.

Scientists in domains such as physical and geosciences, who analyze large amounts of data will want to purchase this SpringerBrief. Data engineers who design and develop data analysis software and data scientists, and who use Spark or TensorFlow to perform data analyses, such as training a deep neural network will also find this SpringerBrief useful as a reference tool.

on
Desktop
Tablet
Mobile

More in Databases

China's Megatrends : The 8 Pillars of a New Society - John Naisbitt

eBOOK

AI-Powered Search - Trey Grainger

eBOOK

Transformers in Action - Nicole Koenigstein

eBOOK

Investing for Programmers - Stefan Papp

eBOOK

Conquering the Decision Abyss - Keith Hartley

eBOOK

RRP $15.39

$14.99

Birding with AI : Concepts and Projects for Ornithology - Ronald T. Kneusel

eBOOK