Get Free Shipping on orders over $79
Trustworthy Machine Learning under Imperfect Data : Computer Science (R0) - Bo Han

Trustworthy Machine Learning under Imperfect Data

By: Bo Han, Tongliang Liu

eText | 19 October 2025

At a Glance

eText


$259.01

or 4 interest-free payments of $64.75 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.

The subject of this book centres

around trustworthy machine learning under imperfect data. It is primarily designed for

scientists, researchers, practitioners, professionals, postgraduates and

undergraduates in the

field of machine learning and artificial intelligence. The book focuses

on trustworthy deep learning under various types of imperfect data, including

noisy labels, adversarial examples, and out-of-distribution data. It covers

trustworthy machine learning algorithms, theories, and systems.

The main goal of the book is to provide students and researchers in academia with an

unbiased and comprehensive literature review. More importantly, it aims to stimulate

insightful discussions about the future of trustworthy machine learning. By engaging the audience

in more in-depth conversations, the book intends to spark ideas for addressing core

problems in this topic. For example, it will explore how to build up benchmark datasets in

noisy-supervised learning, how to tackle the emerging adversarial learning, and

how to tackle out-of-distribution detection.

For practitioners in the industry,

this book will present state-of-the-art trustworthy machine learning methods to

help them solve real-world problems in different scenarios, such as online

recommendation and web search. While the book will introduce the basics of

knowledge required, readers will benefit from having some familiarity with

linear algebra, probability, machine learning, and artificial intelligence. The

emphasis will be on conveying the intuition behind all formal concepts,

theories, and methodologies, ensuring the book remains self-contained at a high

level.

on
Desktop
Tablet
Mobile

More in Artificial Intelligence

HBR Guide to Generative AI for Managers : HBR Guide - Elisa Farri

eBOOK

AI-Powered Search - Trey Grainger

eBOOK

AI : The End of Human Race - Alex Wood

eBOOK