Get Free Shipping on orders over $79
Transactions on Aspect-Oriented Software Development VI : Special Issue on Aspects and Model-Driven Engineering - Robert B. France

Transactions on Aspect-Oriented Software Development VI

Special Issue on Aspects and Model-Driven Engineering

By: Robert B. France, ?Shmuel Katz, ?Harold Ossher

eText | 26 October 2009 | Edition Number 1

At a Glance

eText


$84.99

or 4 interest-free payments of $21.25 with

 or 

Instant online reading in your Booktopia eTextbook Library *

Why choose an eTextbook?

Instant Access *

Purchase and read your book immediately

Read Aloud

Listen and follow along as Bookshelf reads to you

Study Tools

Built-in study tools like highlights and more

* eTextbooks are not downloadable to your eReader or an app and can be accessed via web browsers only. You must be connected to the internet and have no technical issues with your device or browser that could prevent the eTextbook from operating.
work for small problems, but it introduces signi?cant accidental complexities when tackling larger problems. Notethattherealchallengehereisnothowtodesignthesystemtotakeap- ticular aspect into account: there is signi?cant design know-how in industry on this and it is often captured in the form of design patterns. Taking into account more than one aspect can be a little harder, but many large scale successful projects in industry provide some evidence that engineers know how di?erent concerns should be handled. The real challenge is reducing the e?ort that the engineerhasto expendwhengrapplingwithmanyinter-dependentconcerns.For example, in a product-line context, when an engineer wants to replace a variant of an aspect used in a system, she should be able to do this cheaply, quickly and safely. Manually weaving every aspect is not an option. Unlike many models used in the sciences, models in software and in lingu- tics have the same nature as the things they model. In software, this provides an opportunity to automatically derive software from its model, that is, to - tomate the weaving process. This requires models to be formal, and the weaving process be described as a program (i.e., an executable meta-model) manipul- ing models to produce a detailed design. The detailed design produced by the weaving process can ultimately be transformed to code or at least test suites.
on
Desktop
Tablet
Mobile

More in Computer Programming & Software Development

The End of Leadership - Barbara Kellerman

eBOOK

Addiction by Design : Machine Gambling in Las Vegas - Natasha Dow Schüll

eBOOK